Spatial analyses revealed S100P + TFF1 + tumor cells in spread through air spaces samples correlated with undesirable therapy response in non-small cell lung cancer.

J Transl Med

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spread through air spaces (STAS) is a recognized aggressive pattern in lung cancer, serving as a crucial risk factor for postoperative recurrence. However, its phenotype and related spatial structure have remained elusive. To address these limitations, we conducted a comprehensive study based on spatial data, analyzing over 30,000 spots from 14 non-STAS samples and one STAS sample. We observed increased proliferation activities and angiogenesis in STAS, identifying S100P as a potential biomarker for STAS. Furthermore, our investigation into the heterogeneity of STAS tumor cells revealed a subset identified as S100P + TFF1 +, exhibiting a negative impact on patients' survival in public datasets. This subtype exhibited the highest activities in the TGFb and hypoxia, suggesting its potential pro-tumor role within the tumor microenvironment. To assess the role of S100P + TFF1 + tumor cells in therapy response, we included data from two clinical trial cohorts (BPI-7711 for EGFR-TKI therapy and ORIENT-3 for immunotherapy). The presence of S100P + TFF1 + tumor cells correlated with worse responses to both EGFR-TKI therapy and immunotherapy. Notably, TFF1 emerged as a serum marker for predicting EGFR-TKI response. Cell-cell communication analysis revealed that the TGFb signaling pathway was the most activated in S100P + TFF1 + tumor cells, with TGFB2-TGFBR2 identified as the main ligand-receptor pair. This was further validated by multiplex immunofluorescence performed on twenty NSCLC samples. In summary, our study identified S100P as the biomarker for STAS and highlighted the adverse role of S100P + TFF1 + tumor cells in survival outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462816PMC
http://dx.doi.org/10.1186/s12967-024-05722-6DOI Listing

Publication Analysis

Top Keywords

s100p + tff1 + tumor cells
20
spread air
8
air spaces
8
therapy response
8
lung cancer
8
biomarker stas
8
role s100p + tff1 + tumor
8
egfr-tki therapy
8
cells
6
stas
6

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.

View Article and Find Full Text PDF

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.

View Article and Find Full Text PDF