MiR-875-5p suppresses Gli1 to alter the hedgehog signaling pathway, which in turn has hepatocellular cancer-related tumor suppressing properties.

Heliyon

Department of Hepatobiliary Surgery, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: One of the most prevalent cancers worldwide is HCC, which has put patient health at risk. Increasing evidence indicated that messenger RNAs (mRNAs) played significant roles in modulating tumorigenesis. It has been established that Gli1 acts as an oncogene in a number of malignancies. However, more research was necessary to understand the Gli1 regulation mechanism in HCC.

Methods: Microarray technology was used to evaluate the expression of mRNAs. RT-qPCR was utilized to evaluate Gli1 and miR-875-5p expression. To investigate the role of Gli1, tests using CCK-8, EdU, transwell, immunofluorescence, and Western blot analysis was performed. RIP, RNA pull down, and luciferase reporter assays were employed to verify the interaction between Gli1 and miR-875-5p.

Results: In tissues and cells of HCC, Gli1 expression appeared to be upregulated, especially in metastatic samples and advanced stages of the disease. A worse outcome was predicted by elevated Gli1 expression. Additionally, in HCC, Gli1 inhibition impeded the growth, migration, and development of the EMT. Since miR-875-5p was shown to have a molecular target in Gli1, miR-875-5p mediated the negative regulation of Gli1. In HCC tissues, its expression pattern was less prominent. In HCC tissues, there was an inverse relationship between Gli1 expression and miR-875-5p expression. Overexpressing Gli1 helped to partially counteract the suppression of HCC migration, proliferation, and EMT formation by miR-875-5p overexpression.

Conclusions: MiR-875-5p in HCC suppresses tumors by downregulating Gli1, which supplies a novel treatment for HCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459020PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e37771DOI Listing

Publication Analysis

Top Keywords

gli1
14
gli1 expression
12
hcc
8
gli1 mir-875-5p
8
mir-875-5p expression
8
hcc gli1
8
hcc tissues
8
mir-875-5p
7
expression
7
mir-875-5p suppresses
4

Similar Publications

Hepatocellular carcinoma (HCC) is one of the leading cancers worldwide, and its development is strongly associated with the tumour microenvironment, particularly fibrosis and chronic inflammation. This study aims to investigate the role of the Hedgehog (Hh) pathway, a key signalling pathway in HCC progression, in the interaction between HCC cells and monocytes, which are central players in inflammation. Using a transwell migration assay, GLI1, the downstream transcriptional effector of the Hh pathway in HCC cells, was found to promote the migration of THP-1 monocyte cells.

View Article and Find Full Text PDF

Ductal carcinoma in situ (DCIS) is a noninvasive precursor of breast cancer with a high potential for progression. Aberrant DNA methylation plays a pivotal role in early tumorigenesis, yet the regulatory mechanisms remain incompletely defined. Integrated bioinformatic analysis of methylation and transcriptomic datasets identified miR-217 as a candidate regulator of DNA methyltransferase 1 (DNMT1).

View Article and Find Full Text PDF

Aims: In recent years, molecular methods have emerged as valuable tools for identifying novel characteristics and recognizing extremely rare entities, thereby enhancing our understanding of their occurrence. In this case series, we present four exceptionally rare mesenchymal lesions affecting the knee region. Each case posed unique challenges, highlighting the pivotal role of molecular testing in achieving accurate diagnoses.

View Article and Find Full Text PDF

Glioblastoma (GBM) represents an extremely aggressive brain malignancy with limited treatment options, difficult prognosis and a highly heterogeneous cellular architecture, including a subpopulation of cancer stem-like cells (CSCs). These CSCs frequently rely on developmental signaling pathways such as Sonic Hedgehog (SHH), which are typically dormant in adult tissue but reactivated in tumors. This study aimed to investigate how SHH pathway inhibition affects both bulk GBM cells (GBMCs) and CD133 + GBM cells (GBM CSCs), with particular emphasis on the influence of astrocyte co-culture, which more closely mimics the brain tumor microenvironment.

View Article and Find Full Text PDF

The extracellular matrix (ECM) plays essential roles in regulating various aspects of nervous system development. The ECM can be obtained through decellularization techniques, which preserve the native structure of tissue while removing cells and genetic material. Despite recent advancements in decellularization methods, removing cells from brain tissue remains challenging due to its delicate mechanical structure.

View Article and Find Full Text PDF