98%
921
2 minutes
20
Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616766 | PMC |
http://dx.doi.org/10.1093/brain/awae215 | DOI Listing |
Radiology
September 2025
Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Md.
Background Elevated brain iron is a potential marker for neurodegeneration, but its role in predicting onset of mild cognitive impairment (MCI) and prospective cognitive trajectories remains unclear. Purpose To investigate how brain iron and amyloid-β (Aβ) levels, measured using quantitative susceptibility mapping (QSM) MRI and PET, help predict MCI onset and cognitive decline. Materials and Methods In this prospective study conducted between January 2015 and November 2022, cognitively unimpaired older adults underwent baseline QSM MRI.
View Article and Find Full Text PDFRadiology
September 2025
Boston University, VA Boston Health Care System, Boston Medical Center, One Boston Medical Center Place, Boston, MA 02118.
Brain Behav
September 2025
Department of Thoracic Surgery II, Department of Lung Transplantation, Organ Transplantation Center, the First Hospital of Jilin University, Changchun, China.
Background: Ischemic stroke (IS) treatment remains a significant challenge. This study aimed to identify potential druggable genes for IS using a systematic druggable genome-wide Mendelian Randomization (MR) analysis.
Methods: Two-sample MR analysis was conducted to identify the causal association between potential druggable genes and IS.
Background: Intervertebral disc degeneration (IDD) is a prevalent spinal condition frequently associated with pain and motor impairment, imposing a substantial burden on quality of life. Despite extensive investigations into the genetic predisposition to IDD, the precise pathogenic genes and molecular pathways involved remain inadequately characterized, underscoring the need for continued research to clarify its genetic underpinnings.
Methods: This study leveraged IDD data from the FinnGen R12 cohort and integrated expression quantitative trait loci data across 49 tissues from the Genotype-Tissue Expression version 8 database to perform a cross-tissue transcriptome-wide association study (TWAS).
Medicine (Baltimore)
September 2025
Department of Oncology, No. 971 Hospital of PLA Navy, Shinan District, Qingdao, China.
Breast cancer is a major health threat to women, with limited effective indicators for early screening and prognosis. The role of sphingosine 1-phosphate receptor 1 (S1PR1) in breast cancer remains controversial. This study aims to explore the potential causal relationship between S1PR1 and breast cancer risk, considering estrogen receptor (ER) status.
View Article and Find Full Text PDF