Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein misfolding and aggregation are the hallmarks of neurodegenerative diseases including Huntington's disease, Parkinson's disease, Alzheimer's disease, and prion diseases. A crowded cellular environment plays a crucial role in modulating protein aggregation processes and the pathological aggregation of proteins linked to different neurodegenerative disorders. Here, we review recent studies examining the effects of various crowding agents, such as polysaccharides, polyethylene glycol, and proteins like BSA and lysozyme on the behaviors of aggregation of several amyloidogenic peptides and proteins, including amylin, huntingtin, tau, α-synuclein, prion, and amyloid-β. We also summarize how the aggregation kinetics, thermodynamic stability, and morphology of amyloid fibrils are altered significantly in the presence of crowding agents. In addition, we also discuss the molecular basis underlying the modulation of amyloidogenic aggregation, focusing on changes in the protein conformation, and the nucleation mechanism. The molecular understanding of the effects of macromolecular crowding on amyloid aggregation is essential for revealing disease pathologies and identifying possible therapeutic targets. Thus, this review offers a perspective on the complex interplay between protein aggregation and the crowded cellular environment and explains the relevance of crowding in the context of neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.4c00365DOI Listing

Publication Analysis

Top Keywords

protein aggregation
12
neurodegenerative disorders
12
aggregation
9
crowded cellular
8
cellular environment
8
crowding agents
8
crowding
5
protein
5
unraveling molecular
4
molecular jam
4

Similar Publications

Predicting Antibody-Antigen (Ab-Ag) docking and structure-based design represent significant long-term and therapeutically important challenges in computational biology. We present SAGERank, a general, configurable deep learning framework for antibody design using Graph Sample and Aggregate Networks. SAGERank successfully predicted the majority of epitopes in a cancer target dataset.

View Article and Find Full Text PDF

was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.

View Article and Find Full Text PDF

Polystyrene nanoparticles (PS-NPs) are prevalent environmental contaminants that can accumulate in biological tissues. This study investigates the effects of PS-NPs on TM4 cells, a Sertoli cell line crucial for maintaining the male spermatogenesis microenvironment.TM4 cells were exposed to PS-NPs (0-100 μg/mL) duration of 24 to 72 h.

View Article and Find Full Text PDF

Whole genome sequence analysis of low-density lipoprotein cholesterol across 246 K individuals.

Genome Biol

September 2025

Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF

We explored the role of Polygonatum Rhizoma polysaccharide (PRP) in delaying aging and improving Alzheimer's disease (AD) and revealed its potential molecular mechanism. Through chemical characterizations to clarify the physicochemical properties of PRP, it was found that PRP mainly consists of mannose, glucose, galactose, and arabinose, with molecular weights ranging from 7.4 × 10 to 9.

View Article and Find Full Text PDF