98%
921
2 minutes
20
Objective: DNA synthesis companies screen orders to detect controlled sequences with misuse risks. Assessing screening accuracy is challenging owing to the breadth of biological risks and ambiguities in risk definitions. Here, we detail an International Gene Synthesis Consortium working group's rationale and process to develop a prototype DNA synthesis screening test dataset, aiming to establish a baseline of screening system accuracy to compare with various screening approaches.
Methodology: Construction of the prototype test dataset involved four tool developers screening nucleic acid sequences from three taxonomic clusters of controlled organisms (, , and ). Results were mapped onto predefined, comparable categories, checking for consensus or conflicts. Conflicts were grouped based on gene annotation and resolved through discussion.
Results: The process highlighted several long-standing challenges in DNA synthesis screening, including the qualitative differences in approaches taken by screening tools. Our findings highlight the lack of clarity in assessing pathogen sequences with respect to regulatory control language, compounded by scientific uncertainty. We illustrate the current degree of consensus and existing challenges using classification statistics and specific examples.
Conclusions And Next Steps: This prototype underscores the necessity of expert-regulator coordination in assessing gene-associated risks, offering a template for creating test sets across all taxonomic groups on international control lists. Expanding the working group would enrich dataset comprehensiveness, enabling a transition from species-focused to function-focused regulatory controls. This sets the foundation for quality control, certification, and improved risk assessment in DNA synthesis screening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447130 | PMC |
http://dx.doi.org/10.1089/apb.2023.0033 | DOI Listing |
Mol Ecol
September 2025
State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.
Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).
View Article and Find Full Text PDFRSC Chem Biol
September 2025
Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA.
The bacterial DNA damage (SOS) response promotes DNA repair, DNA damage tolerance, and survival in the setting of genotoxic stress, including stress induced by antibiotics. In , translesion DNA synthesis can be fulfilled by Y-family DNA polymerases, including DNA polymerase IV (DinB). DinB features a more open active site and lacks proofreading ability, promoting error-prone replication.
View Article and Find Full Text PDFAppl Biosaf
August 2025
Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
The Framework for Nucleic Acid Synthesis Screening (FNASS), introduced by the U.S. White House Office of Science and Technology Policy, establishes new biosecurity measures to address emerging concerns about the potential misuse of synthetic nucleic acid sequences.
View Article and Find Full Text PDFAppl Biosaf
August 2025
Signature Science, LLC, Charlottesville, Virginia, USA.
Screening synthetic nucleic acid orders for sequences of concern is a necessary part of a healthy biosecurity regime, but it exacts costs for nucleic acid providers. Taxonomy is and will remain a critical part of the decision-making process for screening, especially for viral sequences. But, moving forward, the function of a sequence will also be determinative of its level of concern, or lack thereof.
View Article and Find Full Text PDFEnviron Epigenet
May 2025
Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000 Grenoble, France.
An increasing number of epigenome-wide association studies report tobacco smoking-associated DNA methylation levels. However, comprehensive replication studies remain scarce, particularly in placenta, despite their crucial interest in such a large-scale context. Using DNA methylation data from the EPIC array of 341 new placentas (85 smokers, 219 non-smokers, and 37 former smokers) from the EDEN cohort, we used a candidate approach to replicate maternal smoking-associated CpGs and regions previously identified using the 450K array, and an exploratory approach to discover new associations within EPIC-specific CpGs.
View Article and Find Full Text PDF