98%
921
2 minutes
20
Lymphangiogenesis plays a pivotal role in the pathogenesis of various vascular disorders, including ocular vascular diseases and cancers. Deregulation of -methyladenosine (mA) modification has been identified as a key contributor to human diseases. However, the specific involvement of mA modification in lymphatic remodeling remains poorly understood. In this study, we demonstrate that inflammatory stimulation and corneal sutures induce elevated levels of methyltransferase-like 3 (METTL3)-mediated mA modification. METTL3 knockdown inhibits lymphatic endothelial viability, proliferation, migration, and tube formation in vitro. METTL3 knockdown attenuates corneal sutures-induced lymphangiogenesis and intratumoral lymphangiogenesis initiated by subcutaneous grafts, consequently restraining corneal neovascularization, tumor growth, and tumor neovascularization in vivo. Mechanistically, METTL3 knockdown upregulates prostaglandin-endoperoxide synthase 2 expression through an mA-YTHDF2-dependent pathway, enhancing the synthesis of cyclopentenone prostaglandins (CyPGs). Aberrant CyPG production in lymphatic endothelial cells impairs mitochondrial oxidative phosphorylation, contributing to pathological lymphangiogenesis. Moreover, selective inhibition of METTL3 with STM2457 reduces mA levels in lymphatic endothelial cells, effectively suppressing pathological lymphangiogenesis. This study provides compelling evidence that lymphatic-specific METTL3 plays a critical role in vascular patterning through prostaglandin metabolism reprogramming. Thus, METTL3 emerges as a promising target for treating lymphangiogenesis-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450254 | PMC |
http://dx.doi.org/10.1002/mco2.728 | DOI Listing |
J Cell Mol Med
September 2025
Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Cardiac fibrosis, especially in the infarct border zone, leads to decreased cardiac compliance, impaired systolic and diastolic function, resulting in heart failure. M6A methylation plays a role in fibrosis development. However, its underlying mechanism remains poorly understood.
View Article and Find Full Text PDFPost-transcriptional RNA modifications, such as N6-methyladenosine (m6A) methylation and adenosine to inosine (A-to-I) editing, are critical regulators of hematopoietic stem cell (HSC) self-renewal and differentiation, yet their precise contributions to malignant transformation are not fully elucidated. In this study, we uncovered the epitranscriptomic landscape caused by knockdown of genes from the methyltransferase (METTL)-family in hematopoietic stem and progenitor cells (HSPCs). We identified both converging and distinct roles of METTL3 and METTL14, known members of the m6A writer complex, as well as orphan gene METTL13.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
September 2025
Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Ji'nan 250012, China.
To investigate the mechanism by which PIWI interacting RNA piR-hsa-26925 regulates the invasion and metastasis of lung adenocarcinoma through Methyltransferase-like 3 (METTL3)-mediated m6A methylation modification. The expression levels of piR-hsa-26925 were detected in lung adenocarcinoma cell lines (H1650, H1299, H1975, and A549) and normal lung epithelial cells (BEAS-2B) using real-time fluorescent quantitative PCR (qRT-PCR). Lung adenocarcinoma cells were transfected using transient RNA transfection technology, divided into a piR-hsa-26925 knockdown group in the A549 lung adenocarcinoma cell line and a negative control (NC-1) group; the lung adenocarcinoma H1299 cell line piR-hsa-26925 overexpression group and negative control (NC-2) group.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA.
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification, enriched in the CNS yet poorly characterized in glioma. Using long-read RNA sequencing, we mapped m6A in an glioma model following knockdown (KD) of the reader IGF2BP2, writer METTL3, and eraser ALKBH5, with naive glioma cells and astrocytes as controls. Glioma cells exhibited a two-fold reduction in global m6A, suggesting progressive loss from healthy to malignant states.
View Article and Find Full Text PDFFASEB J
September 2025
School and Hospital of Stomatology, Zunyi Medical University, Zunyi City, Guizhou Province, China.
To investigate whether interferon-gamma (IFN-γ) alleviates postmenopausal osteoporosis (POP) by regulating METTL3 via the JAK2/STAT3 pathway to enhance osteogenic differentiation of jawbone marrow stromal cells (JBMSCs). Ovariectomized (OVX) rats received IFN-γ (5000 IU/dose, 3×/week for 24 weeks), with jawbone mass assessed via micro-CT and HE staining. JBMSCs were cultured, and osteogenic differentiation under IFN-γ (optimal concentration: 10 ng/mL) was evaluated using qRT-PCR, ALP/alizarin red staining, and CCK-8.
View Article and Find Full Text PDF