Understanding the Adsorption Kinetics of Acetone in Humid Activated Carbons: Perspectives from Adsorption-Breakthrough Experiments and Molecular Simulations.

ACS Omega

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The presence of water vapor influences the adsorption equilibrium and kinetics of volatile organic compounds (VOCs) in porous materials. By combination of breakthrough experiments and molecular simulations, the competitive adsorption mechanisms of water vapor and acetone on activated carbon with different textures and surface chemical properties at different humidity levels were investigated. Adsorption capacity decreases with increasing relative humidity owing to the formation of preferential adsorption sites between water and the activated carbon surface, while the adsorption rate initially increases and then decreases with increasing relative humidity. Experimental and simulation results revealed that the existence of a small amount of water changed the pore size distributions of activated carbon, thereby promoting the diffusion of acetone molecules. As the relative humidity increased, a portion of the acetone dissolved in water, resulting in a reduction in the adsorption rate. The response of different functional groups to relative humidity was further clarified by molecular simulation. Activated carbons with a high electrostatic interaction with acetone were less affected by humidity and thus exhibit greater potential as adsorbents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448783PMC
http://dx.doi.org/10.1021/acsomega.4c02262DOI Listing

Publication Analysis

Top Keywords

relative humidity
16
activated carbon
12
activated carbons
8
experiments molecular
8
molecular simulations
8
water vapor
8
decreases increasing
8
increasing relative
8
adsorption rate
8
adsorption
6

Similar Publications

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF

Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.

View Article and Find Full Text PDF

Probing the Influence of Water on the Molecular Mobility of PVP/VA using Terahertz Spectroscopy.

Mol Pharm

September 2025

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.

The presence of water significantly impacts the physical stability of amorphous solid dispersions (ASDs) by altering polymer molecular mobility. This study investigates the influence of low levels of absorbed water on the molecular dynamics and glass transition behavior of amorphous poly(vinylpyrrolidone--vinyl acetate) (PVP/VA). Melt-quenched PVP/VA discs were conditioned at controlled relative humidities (RH 8.

View Article and Find Full Text PDF

The microbial and physicochemical changes of hawthorn sticks in four packaging, including the traditional metallic twist tie packaging with biaxially oriented polypropylene and cast polypropylene, and vacuum packaging (VP), deoxygenated packaging (DP), and plastic packaging (PP) with polyamide/polyethylene (PA/PE) composite film, were compared during the storage at controlled temperature and relative humidity. After 60 days of storage, the control group showed an unacceptable increase in molds (0.65 log CFU/g) and maximum physicochemical losses (25% of moisture content and 72.

View Article and Find Full Text PDF