Mapping Lesion-Related Human Aggression to a Common Brain Network.

Biol Psychiatry

Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospi

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Aggression exacts a significant toll on human societies and is highly prevalent among neuropsychiatric patients. The neural mechanisms of aggression are unclear and treatment options are limited.

Methods: Using a recently validated lesion network mapping technique, we derived an aggression-associated network by analyzing data from 182 patients who had experienced penetrating head injuries during their service in the Vietnam War. To test whether damage to this lesion-derived network would increase the risk of aggression-related neuropsychiatric symptoms, we used the Harvard Lesion Repository (N = 852). To explore potential therapeutic relevance of this network, we used an independent deep brain stimulation dataset of 25 patients with epilepsy, in which irritability and aggression are known potential side effects.

Results: We found that lesions associated with aggression occurred in many different brain locations but were characterized by a specific brain network defined by functional connectivity to a hub region in the right prefrontal cortex. This network involves positive connectivity to the ventromedial prefrontal cortex, dorsolateral prefrontal cortex, frontal pole, posterior cingulate cortex, anterior cingulate cortex, temporal-parietal junction, and lateral temporal lobe and negative connectivity to the amygdala, hippocampus, insula, and visual cortex. Among all 24 neuropsychiatric symptoms included in the Harvard Lesion Repository, criminality demonstrated the most alignment with our aggression-associated network. Deep brain stimulation site connectivity to this same network was associated with increased irritability.

Conclusions: We conclude that brain lesions associated with aggression map to a specific human brain circuit, and the functionally connected regions in this circuit provide testable targets for therapeutic neuromodulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968440PMC
http://dx.doi.org/10.1016/j.biopsych.2024.09.022DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
12
network
9
brain network
8
aggression-associated network
8
neuropsychiatric symptoms
8
harvard lesion
8
lesion repository
8
deep brain
8
brain stimulation
8
lesions associated
8

Similar Publications

GluN2A-NMDA receptor inhibition disinhibits the prefrontal cortex, reduces forced swim immobility, and impairs sensorimotor gating.

Acta Pharmacol Sin

September 2025

Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Bas

Recent investigations into the rapid antidepressant effects of ketamine, along with studies on schizophrenia-related susceptibility genes, have highlighted the GluN2A subunit as a critical regulator of both emotion and cognition. However, the specific impacts of acute pharmacological inhibition of GluN2A-containing NMDA receptors on brain microcircuits and the subsequent behavioral consequences remain poorly understood. In this study, we first examined the effects of MPX-004, a selective GluN2A NMDA receptor inhibitor, on behavior within the dorsomedial prefrontal cortex (dmPFC).

View Article and Find Full Text PDF

Deep brain stimulation (DBS) is an emerging treatment for otherwise treatment-refractory psychiatric disorders. It can produce remarkable clinical results in expert hands, but has not fared as well in controlled, multisite trials. That difficulty with scaling up arises in part because DBS' mechanisms are poorly understood, meaning that it is difficult to objectively identify patients likely to respond and/or to customize stimulation to match individual patients' needs.

View Article and Find Full Text PDF

Humans frequently make decisions that impact close others. Prior research has shown that people have stable preferences regarding such decisions and maintain rich, nuanced mental representations of their close social partners. Yet, if and how such mental representations shape social decisions preferences remains to be seen.

View Article and Find Full Text PDF

[Impact of transcranial magnetic stimulation on depressive symptoms relief in patients with chronic neuropathic pain and comorbid depression: A narrative literature review].

Encephale

September 2025

Centre de référence régional des pathologies anxieuses et de la dépression, pôle de psychiatrie générale et universitaire, centre hospitalier Charles-Perrens, 33076 Bordeaux, France; Inserm U1215, Neurocentre Magendie, 33000 Bordeaux, France. Electronic address:

Neuropathic pain results from an injury or a dysfunction of the somatosensory system. Management of this disease is complex due to a restricted therapeutic arsenal and limited efficacy of currently available treatments. Because of its chronic and disabling nature, neuropathic pain is strongly associated with depressive disorders.

View Article and Find Full Text PDF