Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Proposal-free instance segmentation methods have significantly advanced the field of biological image analysis. Recently, the Segment Anything Model (SAM) has shown an extraordinary ability to handle challenging instance boundaries. However, directly applying SAM to biological images that contain instances with complex morphologies and dense distributions fails to yield satisfactory results. In this work, we propose BioSAM, a new biological instance segmentation framework generating SAM prompts from a superpixel graph. Specifically, to avoid over-merging, we first generate sufficient superpixels as graph nodes and construct an initialized graph. We then generate initial prompts from each superpixel and aggregate them through a graph neural network (GNN) by predicting the relationship of superpixels to avoid over-segmentation. We employ the SAM encoder embeddings and the SAM-assisted superpixel similarity as new features for the graph to enhance its discrimination capability. With the graph-based prompt aggregation, we utilize the aggregated prompts in SAM to refine the segmentation and generate more accurate instance boundaries. Comprehensive experiments on four representative biological datasets demonstrate that our proposed method outperforms state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3474706 | DOI Listing |