98%
921
2 minutes
20
Peptide-based drugs are powerful inhibitors of therapeutically relevant protein-protein interactions. Their affinity and selectivity for target proteins are commonly assessed using fluorescence-based assays such as anisotropy/polarization or quantitative microarrays. This study reveals that labeling can perturb peptide/protein binding by more than 1 order of magnitude. We have recently developed inhibitors targeted to the N-terminal Src homology 2 (SH2) domain of oncogenic phosphatase SHP2. Despite their high activity and selectivity, these molecules demonstrated an undesired interaction with the SH2 domain of another protein, known as APS, in a fluorescence microarray assay. Fluorescence anisotropy measurement in solution showed that the dissociation constant was significantly influenced by labeling (∼10 times), and the effect depended on the specific fluorophore and SH2 domain. Notably, displacement assays performed with unlabeled peptides were successfully used to eliminate these artifacts, demonstrating that the inhibitors' affinity for their target is over 1,000 times higher than for APS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c01767 | DOI Listing |
Biofactors
September 2025
Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Cancer is one of the major public health challenges worldwide, and the STAT3 signaling pathway is recognized as one of the most important signaling pathways in the progression of this disease. This pathway can increase the survival and proliferation of cancer cells and their resistance to treatment by regulating lipid and carbohydrate metabolism, apoptosis, and inflammatory processes. Therefore, STAT3 inhibition is considered an effective therapeutic approach in the fight against cancer.
View Article and Find Full Text PDFGene Expr Patterns
September 2025
Experimental Research Center, QingPu Hospital Affiliated to Fudan University, Shanghai, China.
The SH2B family, which includes SH2B1, SH2B2, and SH2B3, consists of adaptor proteins that possess conserved Src homology 2 (SH2) and pleckstrin homology (PH) domains, playing essential roles as signaling mediators. However, the gene expression patterns of this family during embryonic development are still mostly unclear. In this study, we first investigated the evolutionary conservation of SH2B across multiple species using phylogenetic analysis, which revealed high sequence homology between zebrafish Sh2b and its orthologs in other vertebrates.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
Purpose: Acute myocardial infarction (AMI) is a major global health concern worldwide. The upregulation of the CD47 on apoptotic cardiomyocytes acts as a "don't-eat-me" signal, inhibiting the clearance of apoptotic cells by macrophages (a process known as efferocytosis) via the Signal Regulatory Protein α (SIRPα)/ SH2 Domain-Containing Phosphatase 1 (SHP1) axis, leading to secondary inflammatory activation. Additionally, impairment of this process can result in insufficient macrophage polarization towards the reparative M2 phenotype.
View Article and Find Full Text PDFActa Pharmacol Sin
September 2025
National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060,
Chemoresistance is a major factor contributing to the poor prognosis of osteosarcoma. Increasing evidence underscores the pivotal role of enhanced tumor stemness in driving drug resistance. In this study we investigated the molecular mechanisms underlying the chemoresistance and stemness in osteosarcoma.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
September 2025
Department of Chemistry and Physics, University of Almeria, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, Carretera de Sacramento s/n, 04120 Almeria, Spain.
The c-Src SH3 domain is one of the best-characterized modular domains from a biophysical and structural point of view. This SH3 domain displays noncanonical alternative folding, forming 3D domain-swapped oligomers and amyloid fibrils. These features make this small protein an ideal model for studying these phenomena.
View Article and Find Full Text PDF