Publications by authors named "Fernando Formaggio"

This study explores the use of a novel polymeric mesoporous support (pDVB) for solid-phase peptide synthesis (SPPS), with the aim of improving the efficiency and sustainability of the process. The pDVB support, functionalized with the Fmoc-Rink amide linker, offers advantages over conventional supports based on gel-type, lightly crosslinked polymer skeletons, particularly with regard to reduced reliance on swelling capacity, which allows the use of a wider range of solvents. The work focuses on greener and eco-friendly solvents such as TEP, ACN, IPA, and their mixtures with DMSO to replace toxic solvents such as DMF.

View Article and Find Full Text PDF

The results of an analysis on the presence of π-turns, characterized by an i ← i + 5 C=O···H-N intramolecular hydrogen bond, in the X-ray diffraction structures of peptides are discussed. The survey returned a total of 55 π-turn occurrences in linear and cyclic peptides. π-Turns characterized by a helical conformation for residue i + 4, but with a screw sense opposite to that of the three preceding residues, are largely prevailing.

View Article and Find Full Text PDF

Antimicrobial resistance represents a significant global health threat, prompting the exploration of alternative therapeutic strategies. Antimicrobial peptides (AMPs) and lipopeptides are promising candidates due to their unique ability to disrupt bacterial cell membranes through mechanisms distinct from conventional antibiotics. These peptides are typically enhanced by motifs involving cationic amino acids, positive charge, and aromatic residues.

View Article and Find Full Text PDF

This work reports single-crystal X-ray diffraction (XRD), Scanning Tunneling Microscopy (STM), and quantum mechanics calculations of the 3-helical peptide Z-(Aib)-L-Dap(Boc)-Aib-NHiPr (Aib, α-aminoisobutyric acid; Dap, 2,3-diaminopropionic acid; Z, benzyloxycarbonyl; Boc, t-butoxycarbonyl). The peptide forms a double-helical superstructure, studied by XRD and STM. Such architecture is rare in short peptides.

View Article and Find Full Text PDF

Peptide-based drugs are powerful inhibitors of therapeutically relevant protein-protein interactions. Their affinity and selectivity for target proteins are commonly assessed using fluorescence-based assays such as anisotropy/polarization or quantitative microarrays. This study reveals that labeling can perturb peptide/protein binding by more than 1 order of magnitude.

View Article and Find Full Text PDF

Peptide dhvar4, derived from the active domain of our salivary peptide histatin 5, bears a Phe residue in the middle of its hydrophilic face when folded into an α-helix. We then synthesized an analog with this Phe replaced by Lys and two analogs preserving Phe but bearing two and three α-aminoisobutyric acid (Aib) residues to stabilize the helical structure. The aim of this design was to verify which of the two features is more favorable to the biological activity.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) represent a promising class of compounds to fight resistant infections. They are commonly thought to kill bacteria by perturbing the permeability of their cell membranes. However, bacterial killing requires a high coverage of the cell surface by bound peptides, at least in the case of cationic and amphipathic AMPs.

View Article and Find Full Text PDF

Peptaibols are naturally occurring, antimicrobial peptides endowed with well-defined helical conformations and resistance to proteolysis. Both features stem from the presence in their sequence of several, C -tetrasubstituted, α-aminoisobutyric acid (Aib) residues. Peptaibols interact with biological membranes, usually causing their leakage.

View Article and Find Full Text PDF

The results of classifying into various types the 68 examples of isolated α-turns in the X-ray diffraction crystal structures of peptides documented in the literature are presented and discussed in this review article. α-Turns characterized by the trans disposition of all ω torsion angles are common for the backbone linear peptides investigated. In contrast, the cis arrangement of the N-terminal (ω ) torsion angle, among those generated by the three residues internal to the α-turn, is a peculiar feature of 65% of the cyclic peptides.

View Article and Find Full Text PDF

Despite the fact that peptide conjugates with a pendant ferrocenyl (Fc) have been widely investigated, bis-ferrocenyl end-capped peptides are rarely synthetized. In this paper, in addition to the full characterization of the Fc-CO-[-Dap(Boc)]-NH-Fc series, we report a comparison of the three series of bis-ferrocenyl homopeptides synthesized to date, to gain insights into the influence of α-amino isobutyric (Aib), 2,3-diamino propionic (Dap) and C-didehydroalanine (ΔAla) amino acids on the peptide secondary structure and on the ferrocene redox properties. The results obtained by 2D NMR analysis and X-ray crystal structures, and further supported by electrochemical data, evidence different behaviors depending on the nature of the amino acid; that is, the formation of 3-helices or fully extended (2.

View Article and Find Full Text PDF

The suppression of side reactions is one of the most important objectives in peptide synthesis, where highly reactive compounds are involved. Recently, the violuric acid derivative Oxyma-B was introduced into peptide synthesis protocols as a promising additive to efficiently control the optical purity of the amino acids prone to racemization. However, we discovered a side reaction involving the Beckmann rearrangement of Oxyma-B during the coupling reaction, which compromises the yield and purity of the target peptides.

View Article and Find Full Text PDF

Membrane-active peptides are a promising class of antimicrobial and anticancer therapeutics. For this reason, their molecular mechanisms of action are currently actively investigated. By exploiting Electron Paramagnetic Resonance, we study the membrane interaction of two spin-labeled analogs of the antimicrobial and cytotoxic peptide trichogin GA IV (Tri), with opposite bioactivity: Tri(Api), able to selectively kill cancer cells, and Tri(Leu), which is completely nontoxic.

View Article and Find Full Text PDF

Electron paramagnetic resonance spectroscopy, particularly its pulse technique double electron-electron resonance (DEER) (also termed PELDOR), is rapidly becoming an extremely useful tool for the experimental determination of side chain-to-side chain distances between free radicals in molecules fundamental for life, such as polypeptides. Among appropriate probes, the most popular are undoubtedly nitroxide electron spin labels. In this context, suitable biosynthetically derived, helical regions of proteins, along with synthetic peptides with amphiphilic properties and antibacterial activities, are the most extensively investigated compounds.

View Article and Find Full Text PDF

We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein.

View Article and Find Full Text PDF

In synthetic peptides containing Gly and coded α-amino acids, one of the most common practices to enhance their helical extent is to incorporate a large number of l-Ala residues along with noncoded, strongly foldameric α-aminoisobutyric acid (Aib) units. Earlier studies have established that Aib-based peptides, with propensity for both the 3- and α-helices, have a tendency to form ordered three-dimensional structure that is much stronger than that exhibited by their l-Ala rich counterparts. However, the achiral nature of Aib induces an inherent, equal preference for the right- and left-handed helical conformations as found in Aib homopeptide stretches.

View Article and Find Full Text PDF

The design of efficient vascular endothelial growth factor (VEGF) inhibitors is a high-priority research area aimed at the treatment of pathological angiogenesis. Among other compounds, has been identified as a potent VEGF-binding peptide. In order to improve the affinity to VEGF, we built a conformational constrain in its structure.

View Article and Find Full Text PDF

The foldamer field is continuously expanding as it allows to produce molecules endowed with 3D-structures and functions never observed in nature. We synthesized flat foldamers based on the natural, but non-coded, C -didehydroalanine α-amino acid, and covalently linked to them two ferrocene (Fc) moieties, as redox probes. These conjugates retain the flat and extended conformation of the 2.

View Article and Find Full Text PDF
Article Synopsis
  • Tylopeptin B is a peptide with antibacterial properties against Gram-positive bacteria, working by altering bacterial membrane characteristics and increasing permeability, often through self-assembling into channels.
  • Research using pulsed double electron-electron resonance (DEER) shows that Tylopeptin B begins to self-assemble at low concentrations (0.1 mol%) and forms stable clusters at higher concentrations (above 0.2 mol%) with an average cluster size of about 3.3 peptides.
  • DEER and electron spin echo envelope modulation (ESEEM) techniques indicate that at concentrations from 0.1 to 0.2 mol%, Tylopeptin B clusters repel
View Article and Find Full Text PDF

Double electron-electron resonance (DEER, also known as PELDOR) and circular dichroism (CD) spectroscopies were explored for the purpose of studying the specificity of the conformation of peptides induced by their assembly into a self-recognizing system. The E and K peptides are known to form a coiled-coil heterodimer. Two paramagnetic TOAC α-amino acid residues were incorporated into each of the peptides (denoted as K** and E**), and a three-dimensional structural investigation in the presence or absence of their unlabeled counterparts E and K was performed.

View Article and Find Full Text PDF

A new general method to covalently link a peptide to cotton via thiazolidine ring formation is developed. Three different analogues of an ultrashort antibacterial peptide are synthesized to create an antibacterial fabric. The chemical ligation approach to the heterogeneous phase made up of insoluble cellulose fibers and a peptide solution in water is adapted.

View Article and Find Full Text PDF

The influence of conformational dynamics on the self-assembly process of a conformationally constrained analogue of the natural antimicrobial peptide Trichogin GA IV was analysed by spectroscopic methods, microscopy imaging at nanometre resolution, and molecular dynamics simulations. The formation of peptide films at the air/water interface and their deposition on a graphite or a mica substrate were investigated. A combination of experimental evidence with molecular dynamics simulation was used to demonstrate that only the fully developed helical structure of the analogue promotes formation of ordered aggregates that nucleate the growth of micrometric rods, which give rise to homogenous coating over wide regions of the hydrophilic mica.

View Article and Find Full Text PDF

In frozen biological media and molecular glasses only restricted motions exist; because of the weakness and disorder of intermolecular bonds these motions may have stochastic nature. Electron spin echo (ESE) spectroscopy of spin-labeled molecules allows detecting their restricted stochastic rotations (stochastic molecular librations). As in molecular disordered media motions may be highly cooperative, it would be desirable to investigate their spectroscopic manifestation also in the systems where cooperative effects would be certainly ruled out.

View Article and Find Full Text PDF

Correction for 'An EPR study of ampullosporin A, a medium-length peptaibiotic, in bicelles and vesicles' by Marco Bortolus et al., Phys. Chem.

View Article and Find Full Text PDF

Trichogin is a natural peptide endowed with antimicrobial and antitumor activity. A member of the peptaibol family, trichogin possesses a C-terminal amino alcohol. In the past, this moiety was substituted for a methyl ester for synthetic purposes and it was observed that this apparently slight modification caused significant changes in the peptide bioactivity.

View Article and Find Full Text PDF

α,β-Disteroisomeric foldamers of general formula Boc(Ala-β-2,3Fpg)OMe or Boc(Ala-β-2,3Fpg)OMe were prepared from both enantiomers of H-2-(2-F-Phe)-h-PheGly-OH (named β-Fpg) and alanine. Our peptides show two appealing features for biomedical applications: the presence of fluorine, attractive for non-covalent interactions, and aryl groups, crucial for π-stacking. A conformational study was performed, using IR, NMR and computational studies of diastereoisomeric tetra- and hexapeptides containing the β-amino acid in the - and -stereochemistry, respectively.

View Article and Find Full Text PDF