98%
921
2 minutes
20
Interfacial solar evaporation (ISE) has emerged as a promising technology to alleviate global water scarcity via energy-efficient purification of both wastewater and seawater. While ISE was originally identified and developed during studies of simple double-layered two-dimensional (2D) evaporators, observed limitations in evaporation rate and functionality soon led to the development of three-dimensional (3D) evaporators, which is now recognized as one of the most pivotal milestones in the research field. 3D evaporators significantly enhance the evaporation rates beyond the theoretical limits of 2D evaporators. Furthermore, 3D evaporators could have multifaceted functionalities originating from various functional evaporation surfaces and 3D structures. This review summarizes recent advances in 3D evaporators, focusing on rational design, fabrication and energy nexus of 3D evaporators, and the derivative functions for improving solar evaporation performance and exploring novel applications. Future research prospects are also proposed based on the in-depth understanding of the fundamental aspects of 3D evaporators and the requirements for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2024.09.015 | DOI Listing |
Macromol Biosci
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.
View Article and Find Full Text PDFMol Pharm
September 2025
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
The presence of water significantly impacts the physical stability of amorphous solid dispersions (ASDs) by altering polymer molecular mobility. This study investigates the influence of low levels of absorbed water on the molecular dynamics and glass transition behavior of amorphous poly(vinylpyrrolidone--vinyl acetate) (PVP/VA). Melt-quenched PVP/VA discs were conditioned at controlled relative humidities (RH 8.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, Bangkok, 10140 Thailand.
Conventional drying methods, such as hot air-reciprocal tray (HART) and microwave-hot air with a reciprocal tray (MHART), often suffer from low energy efficiency and product degradation at high temperatures or microwave power. This study introduced a step-down microwave-hot air with a reciprocal tray system (SMHART) to enhance drying performance using a programmable MHART setup. SMHART significantly reduced drying time and energy consumption (as low as 332.
View Article and Find Full Text PDFACS Omega
September 2025
Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States.
A nanosecond pulse transient plasma is employed to initiate and control the exothermic decomposition of ionic liquids, namely, a mixture of hydroxylammonium nitrate (HAN) and 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM]/[EtSO], as well as some noncombustible ionic liquids. Here, the plasma is discharged in a cylindrical geometry with a coaxial center wire electrode. High voltage (20 kV) nanosecond pulses (20 ns) at various frequencies up to 10 kHz produce a plasma discharge in the ionic liquid that initiates its nonthermal decomposition.
View Article and Find Full Text PDFACS Omega
September 2025
Aarhus University, Department of Chemistry, Langelandsgade 140, Aarhus DK 8000, Denmark.
Accurately modeling the binding free energies associated with molecular cluster formation is critical for understanding atmospheric new particle formation. Conventional quantum-chemistry methods, however, often struggle to describe thermodynamic contributions, particularly in systems exhibiting significant anharmonicity and configurational complexity. We employed umbrella sampling, an enhanced-sampling molecular dynamics technique, to compute Gibbs binding free energies for clusters formed from a diverse set of new particle formation precursors, including sulfuric acid, ammonia, dimethylamine, and water.
View Article and Find Full Text PDF