98%
921
2 minutes
20
Alginates are marine polysaccharides known for their ability to selectively bind calcium ions and form hydrogels. They are widely used in biomedical applications but are challenging to produce as nanogels. Here we introduce a self-assembly route to create stable alginate-based nanogels under near-equilibrium conditions. Guluronate (G) blocks, which interact with divalent cations such as Ca, Ba, and Sr, were extracted from alginates and covalently linked through their reducing end to the reducing end of dextran (Dex) chains, forming linear block copolymers that self-assemble into micellar nanogels with a core-corona structure in the presence of these ions. Real-time dynamic light scattering (DLS) and small-angle neutron scattering (SANS) were used to study the self-assembly mechanism of the copolymer during dialysis against divalent ions. For the G--Dex copolymer, we achieved spherical micelles with an 8 nm radius and an aggregation number of around 20. Although the type of divalent cation affected micelle stability, it did not influence their size. Micellar nanogels are dynamic structures, capable of ion exchange, and can disassemble with chelating agents like ethylenediamine tetraacetic acid (EDTA).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.4c00717 | DOI Listing |
Curr Drug Targets
May 2025
Department of Pharmacy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UP, 244001, India.
Biomacromolecules
October 2024
Université de Bordeaux, CNRS, Bordeaux INP, Laboratoire de chimie des polymères organiques (LCPO), UMR 5629, F-33600 Pessac, France.
AAPS PharmSciTech
September 2023
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
The combination of herbal drugs with a topical antibacterial for managing a chronic disease like acne vulgaris has emerged lately to settle side effects and bacterial multidrug resistance. Mixed micelles (MMs) incorporated into nanogel were explored for hybrid delivery of curcumin (Cur) and fusidic acid (FA) combination presenting a multi-strategic treatment. Curcumin-fusidic acid-loaded mixed micelles (Cur-FA-MMs) were assessed for size, surface charge, compatibility, in vitro release, and encapsulation.
View Article and Find Full Text PDFPharm Res
October 2023
College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
In this study, nanogel creams carrying paclitaxel (PTX) and temozolomide (TMZ) were prepared for the topical treatment of melanoma. PTX and TMZ were first loaded in poly-(D,L-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(D,L-lactide-co-glycolide) (PLAG-b-PEG-b-PLGA) thermosensitive nanogels, which made a transition from a free-flowing sol (formation of micellar network) at 25°C with the z-average particle size of c.a.
View Article and Find Full Text PDFActa Pharm Sin B
January 2022
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China.
The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs.
View Article and Find Full Text PDF