Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Photocatalytic CO reduction technology has engaged significant attention due to its high efficiency, high selectivity, and environmental friendliness. However, its application is severely restrained by issues such as low separation efficiency of photogenerated carriers and a limited light absorption range. This work proposes an innovative MgCrO/MgInS magnesium-based spinel/spinel heterostructure photocatalyst to improve the photocatalytic CO reduction efficiency through the synergistic contributions of S-scheme heterojunction and photothermal effect. On the one hand, the unique S-scheme charge transfer mechanism enables the effective separation of photogenerated carriers. On the other hand, the photothermal effect allows an accelerated charge migration by increasing the reaction center temperature. Moreover, the abundant oxygen vacancies serve as electron traps and CO adsorption sites, unifying reaction and adsorption sites and substantially improving catalytic efficiency. Under UV-vis and UV-vis-NIR illumination, the average CO yields of the MgCrO/MgInS composite are 8.03 and 15.62 μmol g h, respectively, greatly higher than those of pure MgCrO and MgInS samples. Furthermore, the fabricated photocatalyst demonstrates excellent performance and structure stability. Therefore, this work may offer a new strategy for designing efficient and stable photocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c03044 | DOI Listing |