Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Sodium-glucose co-transporter 2 inhibitors (SGLT2is) have been shown to provide effective cardiorenal protection, reducing mortality in conditions such as heart failure and chronic kidney disease. While several mechanisms have been identified, recent research has shed light on the drug's ability to attenuate sympathetic nervous system (SNS) activity. Controversy exists on whether this is due to the extra-renal effects of the drug, or simply due to its renoprotective effects. However, recent trials have highlighted the persistent efficacy of SGLT2i despite declining renal function. Therefore, investigating the ability of SGLT2i to attenuate the SNS independently of the kidney could lead to more insight into its mechanism of action. So far, there has been limited research done on investigating the extra-renal effects of SGLT2i in human subjects on dialysis where the glycosuric renal effects of SGLT2i are negligible. This current study therefore aims to investigate the effects of SGLT2i on the SNS in anuric haemodialysis patients.

Methods: We developed a protocol for a mechanistic study to investigate the extra-renal effects of SGLT2i on the SNS. The study will be an investigator-led, open-label, prospective study involving 20 adult (aged ≥18 years) haemodialysis patients with a residual urine output of ≤250 mL/day. Participants will be administered empagliflozin 25 mg/day for 6 weeks. Baseline SNS activity will be measured before and after administration by microneurography to assess central SNS outflow. Secondary outcomes such as changes from baseline in SNS stressor response, heart rate variability, and endothelial function will also be examined. We hypothesize that the use of empagliflozin will result in reduced sympathetic drive in anuric haemodialysis patients.

Discussion: This will be the first study evaluating the effects of SGLT2i on the SNS in haemodialysis subjects. This study aims to enhance our understanding of the potential role of SGLT2i-induced SNS reduction in the setting of markedly reduced renal function. The study has received ethics approval from the Royal Perth Hospital Human Research Ethics Committee (RGS0000003840) (Australian New Zealand Clinical Trials Registry [ANZCTR] ID: ACTRN12623001237673).

Download full-text PDF

Source
http://dx.doi.org/10.1159/000541568DOI Listing

Publication Analysis

Top Keywords

effects sglt2i
20
anuric haemodialysis
12
extra-renal effects
12
sglt2i sns
12
sns
9
effects
8
haemodialysis patients
8
study
8
protocol mechanistic
8
sns activity
8

Similar Publications

SGLT-2 inhibitors are a relatively new class of antidiabetic drugs. They activate a transcriptional response similar to calorie restriction characterized by the up-regulation of sensors involved in nutrient deprivation, such as SIRT1 and AMPK, and the down-regulation of mTOR, a molecule involved in nutritional excess signaling. The purpose of this review is to illustrate the main pathways of nutrient deprivation: a complex mechanistic framework partly responsible for the cardio-renal benefits that makes these drugs unique.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such as Empagliflozin, are antidiabetic drugs that reduce glucose levels and have emerged as a promising therapy for patients with heart failure (HF), although the exact molecular mechanisms underlying their cardioprotective effects remain to be fully elucidated. The EmDia study, a randomized, double-blind trial conducted at the University Medical Center of Mainz, has confirmed the beneficial effects of Empagliflozin in HF patients after both one and twelve weeks of treatment. In this work, we aimed to assess whether changes in lipid profiles driven by Empagliflozin use in HF patients in the EmDia trial could assist in gaining a better understanding of its cardioprotective mechanisms.

View Article and Find Full Text PDF

Background: Blood pressure (BP) control remains a therapeutic challenge in kidney transplant recipients (KTRs). Sodium-glucose cotransporter-2 inhibitors (SGLT2is) lower BP in diabetic and chronic kidney disease patients. Whether this effect extents to KTRs remains to be fully established.

View Article and Find Full Text PDF

Background And Aims: Glucagon-like peptide-1 receptor agonists (GLP-1RA) are increasingly used in adults with type 2 diabetes (T2D), with or without obesity. The incidence of gastrointestinal (GI) adverse effects (AEs) of GLP-1RA in T2D is unclear. This study aimed to evaluate all-cause mortality and GI AEs in T2D patients treated with GLP-1RA compared to those treated with sodium-glucose cotransporter-2 inhibitors (SGLT-2i).

View Article and Find Full Text PDF

Endothelial Dysfunction and Therapeutic Advances in Chronic Kidney Disease.

Diabetes Metab Res Rev

September 2025

Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China.

Chronic kidney disease (CKD) substantially increases cardiovascular risk, with endothelial dysfunction as its central pathological mechanism. This review summarises the molecular regulatory mechanisms underlying endothelial dysfunction in CKD and highlights recent advances in treatment strategies. The pathophysiology of endothelial injuries involves a complex network of multiple factors and mechanisms, including oxidative stress, inflammation, glycocalyx damage, ischaemia, hypoxia, cellular senescence and endothelial-mesenchymal transition (EndMT).

View Article and Find Full Text PDF