Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer metastasis remains the most formidable cause of mortality and morbidity in cancer patients. Developing an effective and economical method toward cancer antimetastatic strategy demands immediate attention in anticancer therapy. Herein, we followed a cost-effective greener method for preparing a small family of amphiphilic catiomers with varied styrene content (45, 63, and 83%), which revealed the unique potential of promoting normal cell migration while retarding cancer metastasis. The styrenic polymers formed micellar self-assembly in aqueous phase and exhibited a cationic charge. Polymers were quite nontoxic up to 200 μg/mL concentration toward human embryonic kidney cell HEK293 as well as human, triple negative breast cancer cell MDAMB-231, mouse melanoma cell B16F10, and human oral squamous carcinoma cell FaDu. Confocal imaging and fluorescence activated cell sorting (FACS) showed effective incorporation of polymers within cells. Interestingly, the polymer-treated HEK293 cells underwent prominent wound healing in scratch assay. However, the as-synthesized polymer-treated cancer cells resisted migration as analyzed from the scratch assay. A mechanistic study using immunoblotting assay established upregulation of migratory proteins vimentin and TGF-β and downregulation of E-cadherin in normal HEK293 cells. Remarkably, this trend was completely reversed in cancer cell MDAMB-231. This study describes the extraordinary potential of styrenic catiomers as wound healers for normal cells while inhibiting cancer metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c14410DOI Listing

Publication Analysis

Top Keywords

cancer metastasis
12
cancer
9
cancer cell
8
cell mdamb-231
8
hek293 cells
8
scratch assay
8
cell
7
cells
5
cancer cell-selective
4
cell-selective inhibition
4

Similar Publications

Objectives: The 9th edition of the Tumor, Node, Metastasis (TNM-9) lung cancer classification is set to replace the 8th edition (TNM-8) starting in 2025. Key updates include the splitting of the mediastinal nodal category N2 into single- and multiple-station involvement, as well as the classification of multiple extrathoracic metastatic lesions as involving a single organ system (M1c1) or multiple organ systems (M1c2). This study aimed to assess how the TNM-9 revisions affect the final staging of lung cancer patients and how these changes correlate with overall survival (OS).

View Article and Find Full Text PDF

Late peritoneal carcinomatosis from cutaneous melanoma mimicking ovarian cancer.

Melanoma Res

September 2025

Gynecological Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS-CRO, National Cancer Institute Aviano, Aviano.

Peritoneal carcinomatosis represents an exceptionally rare metastatic pattern of cutaneous malignant melanoma, occurring in fewer than 1% of cases with distant spread and typically within the first few years after primary treatment. This report presents an unusual case with a markedly prolonged disease-free interval, clinically mimicking advanced ovarian carcinoma. We report the case of a 53-year-old woman treated more than 10 years ago for stage IIB nodular melanoma with surgery and adjuvant therapy.

View Article and Find Full Text PDF

The p53 transcription factor family consists of the three members p53, p63, and p73. Both p63 and p73 exist in different isoforms that are well characterized. Isoforms have also been identified for p53 and it has been proposed that they are responsible for increased cancer metastasis.

View Article and Find Full Text PDF

Lung cancer remains one of the leading causes of cancer-related mortality worldwide, highlighting the urgent need for more effective and targeted therapeutic strategies. Traditional Chinese Medicine (TCM), known for its favorable safety profile and broad pharmacological effects, offers promising candidates for cancer treatment. Salvianolic acid F (SAF), a key bioactive compound derived from , has demonstrated antitumor potential, but its role and underlying mechanisms in lung cancer remain inadequately characterized.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with high metastatic potential, limited treatment options, and low patient survival rates. By combining functional proteomics and genomics approaches, we identified an oncogenic transcriptional network in mesenchymal and invasive TNBC involving the glucocorticoid receptor (GR), GATA6, MYC, and AP-1 transcription factors. Although these transcription factors bound extensively to shared enhancers, they utilized different enhancer repertoires from this shared enhancer pool to drive distinct downstream oncogenic pathways.

View Article and Find Full Text PDF