Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The field of energy storage and conversion materials has witnessed transformative advancements owing to the integration of advanced in situ characterization techniques. Among them, numerous real-time characterization techniques, especially in situ transmission electron microscopy (TEM)/scanning TEM (STEM) have tremendously increased the atomic-level understanding of the minute transition states in energy materials during electrochemical processes. Advanced forms of in situ/operando TEM and STEM microscopic techniques also provide incredible insights into material phenomena at the finest scale and aid to monitor phase transformations and degradation mechanisms in lithium-ion batteries. Notably, the solid-electrolyte interface (SEI) is one the most significant factors that associated with the performance of rechargeable batteries. The SEI critically controls the electrochemical reactions occur at the electrode-electrolyte interface. Intricate chemical reactions in energy materials interfaces can be effectively monitored using temperature-sensitive in situ STEM techniques, deciphering the reaction mechanisms prevailing in the degradation pathways of energy materials with nano- to micrometer-scale spatial resolution. Further, the advent of cryogenic (Cryo)-TEM has enhanced these studies by preserving the native state of sensitive materials. Cryo-TEM also allows the observation of metastable phases and reaction intermediates that are otherwise challenging to capture. Along with these sophisticated techniques, Focused ion beam (FIB) induction has also been instrumental in preparing site-specific cross-sectional samples, facilitating the high-resolution analysis of interfaces and layers within energy devices. The holistic integration of these advanced characterization techniques provides a comprehensive understanding of the dynamic changes in energy materials. This review highlights the recent progress in employing state-of-the-art characterization techniques such as in situ TEM, STEM, Cryo-TEM, and FIB for detailed investigation into the structural and chemical dynamics of energy storage and conversion materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433656PMC
http://dx.doi.org/10.3390/molecules29184411DOI Listing

Publication Analysis

Top Keywords

energy materials
20
characterization techniques
16
tem stem
12
energy
8
materials
8
advanced situ
8
situ transmission
8
transmission electron
8
electron microscopy
8
energy storage
8

Similar Publications

Quantum simulations of many-body systems are among the most promising applications of quantum computers. In particular, models based on strongly correlated fermions are central to our understanding of quantum chemistry and materials problems, and can lead to exotic, topological phases of matter. However, owing to the non-local nature of fermions, such models are challenging to simulate with qubit devices.

View Article and Find Full Text PDF

Monatomic glass formation through competing order balance.

Nat Commun

September 2025

Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.

The phase transformation of single-element systems is a fundamental natural process with broad implications, yet many aspects remain puzzling despite their simplicity. For instance, transition metals, Tantalum (Ta) and Zirconium (Zr), commonly form body-centred cubic crystals when supercooled. However, according to large-scale computer simulations, their crystallisation rates can differ by over 100 times.

View Article and Find Full Text PDF

Observing differential spin currents by resonant inelastic X-ray scattering.

Nature

September 2025

National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.

Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.

View Article and Find Full Text PDF

The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.

View Article and Find Full Text PDF