A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mode (de)multiplexers (MDMs) serve as critical foundational elements within systems for facilitating high-capacity communication, relying on mode conversions achieved through directional coupler (DC) structures. However, DC structures are challenged by dispersion issues for broadband mode coupling, particularly for high-order modes. In this work, based on the principles of phase control theory, we have devised an approach to mitigate the dispersion challenges, focusing on a thin-film lithium niobate-on-onsulator (LNOI) platform. This solution involves integrating a customized inverse-dispersion section into the device architecture, offsetting minor phase shifts encountered during the mode coupling process. By employing this approach, we have achieved broadband mode conversion from TE0 to TE1 and TE0 to TE2 within a 300 nm wavelength range, and the maximum deviations were maintained below -0.68 dB and -0.78 dB, respectively. Furthermore, the device exhibited remarkably low crosstalk, reaching down to -26 dB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434317PMC
http://dx.doi.org/10.3390/mi15091084DOI Listing

Publication Analysis

Top Keywords

thin-film lithium
8
phase control
8
control theory
8
broadband mode
8
mode coupling
8
mode
5
ultra-broadband mode
4
mode demultiplexer
4
demultiplexer thin-film
4
lithium niobate
4

Similar Publications