Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, jellyfish venom has gained attention as a promising reservoir of pharmacologically active compounds, with potential applications in new drug development. In this investigation, novel peptides, isolated from the hydrolysates of jellyfish venom (NnV), demonstrate potent inhibitory activities against angiotensin-converting enzyme (ACE). Proteolytic enzymes-specifically, papain and protamex-were utilized for the hydrolysis under optimized enzymatic conditions, determined by assessing the degree of hydrolysis through the ninhydrin test. Comparative analyses revealed that papain treatment exhibited a notably higher degree of NnV hydrolysis compared to protamex treatment. ACE inhibitory activity was quantified using ACE kit-WST, indicating a substantial inhibitory effect of 76.31% for the papain-digested NnV crude hydrolysate, which was validated by captopril as a positive control. The separation of the NnV-hydrolysate using DEAE sepharose weak-anion-exchange chromatography revealed nine peaks under a 0-1 M NaCl stepwise gradient, with peak no. 3 displaying the highest ACE inhibition of 96%. The further purification of peak no. 3 through ODS-C18 column reverse-phase high-performance liquid chromatography resulted in five sub-peaks (3.1, 3.2, 3.3, 3.4, and 3.5), among which 3.2 exhibited the most significant inhibitory activity of 95.74%. The subsequent analysis of the active peak (3.2) using MALDI-TOF/MS identified two peptides with distinct molecular weights of 896.48 and 1227.651. The peptide sequence determined by MS/MS analysis revealed them as IVGRPLANG and IGDEPRHQYL. The docking studies of the two ACE-inhibitory peptides for ACE molecule demonstrated a binding affinity of -51.4 ± 2.5 and -62.3 ± 3.3 using the HADDOCK scoring function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435582PMC
http://dx.doi.org/10.3390/toxins16090410DOI Listing

Publication Analysis

Top Keywords

angiotensin-converting enzyme
8
peptides isolated
8
jellyfish venom
8
inhibitory activity
8
inhibitory
5
ace
5
identification angiotensin-converting
4
enzyme inhibitory
4
peptides
4
inhibitory peptides
4

Similar Publications

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF

Introduction Patients have identified knee stiffness as a factor contributing to postoperative dissatisfaction after total knee arthroplasty (TKA). Losartan is an angiotensin receptor blocker (ARB) that has demonstrated antifibrotic effects; however, the impact of perioperative losartan on arthrofibrosis after TKA is not well understood. Therefore, the purpose of this study was to determine if losartan exhibits antifibrotic benefits in patients who undergo TKA by decreasing the rates of manipulation under anesthesia (MUA), when compared to patients who are not taking losartan.

View Article and Find Full Text PDF

Purpose: SARS-CoV-2 infection may lead to a worse prognosis in COVID-19 patients by inducing syncytia formation which implies intercellular transmission and immune evasion. Hesperidin (HSD) and hesperetin (HST) are two citrus flavonoids that demonstrate the potential to interfere with spike/human angiotensin-converting enzyme-2 (hACE2) binding and show an inhibitory effect in the SARS-CoV-2 pseudovirus internalization model. Here, we determined the effects of HSD and HST to inhibit syncytia formation using in vitro cell models.

View Article and Find Full Text PDF

Bio-functional properties of extruded corn gluten meal after simulated gastrointestinal digestion.

Food Res Int

November 2025

Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, Celso Garcia Cid, PR-445, Km 380 - University Campus, Londrina, PR 86057-970, Brazil. Electronic address:

The objective of the research was to employ extrusion to increase the yield of simulated gastrointestinal digestion of protein corn gluten meal (CG). A single-screw extruder and a full factorial design with two center points were used. The optimal extrusion parameters were 40 % sample moisture, 140 °C and 54 rpm, resulting in a gastrointestinal digestion yield of 37.

View Article and Find Full Text PDF

Arterial Stiffness in HFpEF: From Clinical Insight to Bedside Action.

Cardiol Rev

September 2025

From the Department of General Medicine, J.S.S. Medical College, JSS Academy of Higher Education and Research, Mysuru, India.

Heart failure with preserved ejection fraction (HFpEF) accounts for nearly half of all heart failure cases and is increasing in prevalence due to aging populations and comorbidities such as hypertension and diabetes. While echocardiography remains the diagnostic cornerstone, many patients with preserved ejection fraction present with nonspecific symptoms and ambiguous diastolic indices, leading to diagnostic uncertainty and therapeutic delay. Arterial stiffness-quantified by pulse wave velocity, augmentation index, and cardio-ankle vascular index)-is emerging as a key contributor to HFpEF pathophysiology.

View Article and Find Full Text PDF