Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The encapsulation of protein enzymes in metal-organic frameworks (MOFs) has been recognized as an effective enzyme immobilization approach. In this study, we demonstrated the influence of enzyme amount and the isoelectric points (pI) of different enzymes on the enzyme loading capacity in both mechanochemical (ball-milling) and water-based approaches. We found that increasing enzyme amounts enhances MOF enzyme loading without compromising activity, while the MOF shell protects encapsulated enzymes from proteinase K degradation through its size-sheltering mechanism. However, an excess of enzymes can hinder the formation of ZIF-90. Moreover, enzymes with low pI values (e. g., catalase, pI 5.4) facilitate encapsulation in MOFs, whereas enzymes with high pI values (e. g., lysozyme, pI 11.35) are more challenging to encapsulate. The simulation results revealed that increasing the enzyme amounts and pI values raises the activation energy necessary for MOF formation. This study highlights the crucial role of enzyme properties in the encapsulation process within MOFs, providing valuable insights for fabricating enzyme-MOF biocomposites for diverse applications, such as protein drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202401568 | DOI Listing |