Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Sonocatalytic therapy (SCT) has emerged as a promising noninvasive modality for tumor treatment but is hindered by the insufficient generation of ultrasound-induced reactive oxygen species (ROS) and the hypoxic tumor microenvironments. Herein, we fabricated a carbon nanoframe-confined N-coordinated manganese single-atom sonocatalyst with a five-coordinated structure (MnN SA/CNF) using a phthalocyanine-mediated pyrolysis strategy. The precise coordination structure was identified by synchrotron X-ray absorption fine structure analyses. The MnN SA/CNF exhibits superior and nonoxygen-dependent sonocatalytic activity owing to the optimized coordination structure and cavitation effect enhanced by defects. Additionally, density functional theory studies reveal that the five-coordination structure downshifts the d-band center of Mn from -0.547 to -0.829 eV and enhances the desorption capacity for oxygen-containing intermediates, thus accelerating the catalytic process. Finally, the as-synthesized MnN SA/CNF demonstrates a significantly enhanced antitumor effect through mitochondrial apoptosis in an orthotopic breast cancer mouse model. This work explores the potential of SAzymes-supported biomedical interventions by leveraging enzymatic activity with sonocatalytic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c09052 | DOI Listing |