98%
921
2 minutes
20
The excellent photophysical and electrochemical properties of porphyrins have inspired widespread interest in the realm of electrochemiluminescence (ECL). The aggregation-caused deficiency of ECL emission in aqueous solution, however, still severely impedes further applications. Herein, a molecule with a donor-acceptor (D-A) configuration, ATPP-Cou, consisting of monoaminoporphyrin as an electron donor and coumarin as an electron acceptor, was designed as an ECL luminophore to address the susceptibility of the porphyrin to aggregation-caused quenching (ACQ) in aqueous solution. ATPP-Cou demonstrated a three-fold enhanced ECL signal compared to pristine ATPP. Despite the acknowledged significance of intramolecular charge transfer (ICT) in generating excited states in ECL, there is a lack of quantitative descriptions. Herein, intensity-modulated photocurrent spectroscopy (IMPS) and scanning photoelectrochemical microscopy (SPECM) were utilized to validate the influence of ICT on the enhancement performance of D-A type ECL molecules. Additionally, ATPP-Cou was also developed as a probe for the successful detection of Cu in aqueous solution. The present study not only enriches the repertoire of efficient porphyrin-based ECL luminophores applicable in aqueous environments but also exemplifies the successful integration of novel measurement techniques to provide more comprehensive insights into the underlying mechanisms responsible for improved ECL performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417949 | PMC |
http://dx.doi.org/10.1039/d4sc04274c | DOI Listing |
Inorg Chem
September 2025
Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.
View Article and Find Full Text PDFLangmuir
September 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
The study of the self-assembly of surfactants in aqueous solutions, though a traditional field, remains fascinating and full of novelty. In this article, the anionic perfluorodecanoic acid surfactant (PFA) is separately complexed with three hydroxyalkylamines (monoethanolamine (MEA), diethylamine (DEA), and triethanolamine (TEA)) in aqueous solutions. The transformation of aggregate morphologies from spherical unilamellar to nanotubes and then to spherical bilamellar is observed at room temperature, which is confirmed by cryo-transmission electron microscopy (cryo-TEM).
View Article and Find Full Text PDFAnal Sci
September 2025
Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia.
In this study, both pure and calcium-containing complex liposomes made from DPPC phospholipids were investigated using calorimetric and spectrophotometric methods. Liposomes were prepared using a new technology in both water and a 20% glycerol aqueous solution. Glycerol allows drug-containing DPPC liposomes to penetrate the dermis of the skin through the epidermis.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Mining metals for the advancement of society requires innovative and cost-effective remediation strategies that protect the environment and, ideally, allow for concentration and recovery of metals from waste streams. Microbially mediated strategies that remove metals from aqueous waste streams via sorption and/or oxidation-reduction reactions show promise as eco-friendly, cost-effective solutions. Our objective was to use Mn-oxidizing fungi, isolated from the Soudan Underground Mine State Park, MN, a high-salinity, mine-impacted environment, to sequester transition metals Mn, Co, Cu, and Ni.
View Article and Find Full Text PDF