Automated Real-Time Otologic Drill Motion Analysis.

Laryngoscope

Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, U.S.A.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we present a computer vision model for automatic otologic drill motion analysis during mastoidectomy and detail how to implement a computer vision model for real-time use. Automated real-time surgical analysis has the potential to enable efficient methods for technical skill assessment and broadly transform the landscape of surgical education. Laryngoscope, 135:836-839, 2025.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lary.31795DOI Listing

Publication Analysis

Top Keywords

automated real-time
8
otologic drill
8
drill motion
8
motion analysis
8
computer vision
8
vision model
8
real-time otologic
4
analysis work
4
work computer
4
model automatic
4

Similar Publications

YOLOv10-kiwi: a YOLOv10-based lightweight kiwifruit detection model in trellised orchards.

Front Plant Sci

August 2025

College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi, China.

To address the challenge of real-time kiwifruit detection in trellised orchards, this paper proposes YOLOv10-Kiwi, a lightweight detection model optimized for resource-constrained devices. First, a more compact network is developed by adjusting the scaling factors of the YOLOv10n architecture. Second, to further reduce model complexity, a novel C2fDualHet module is proposed by integrating two consecutive Heterogeneous Kernel Convolution (HetConv) layers as a replacement for the traditional Bottleneck structure.

View Article and Find Full Text PDF

Background: Acute viral respiratory infections (AVRIs) rank among the most common causes of hospitalisation worldwide, imposing significant healthcare burdens and driving the development of pharmacological treatments. However, inconsistent outcome reporting across clinical trials limits evidence synthesis and its translation into clinical practice. A core outcome set (COS) for pharmacological treatments in hospitalised adults with AVRIs is essential to standardise trial outcomes and improve research comparability.

View Article and Find Full Text PDF

Robotic surgery has transformed the field of surgery, offering enhanced precision, minimal invasiveness, and improved patient outcomes. This narrative review explores the multifaceted aspects of robotic surgery, examining the challenges, recent advances, and future prospects for its integration into healthcare. Our comprehensive analysis of 48 studies reveals significant geographic disparities in robotic surgery research and implementation, with 68.

View Article and Find Full Text PDF

Modeling the time evolution of the structure factor during polymeric spinodal decomposition using dynamic mode decomposition.

J Chem Phys

September 2025

School of Mathematical and Physical Sciences, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom.

The development of the microstructure during polymeric spinodal decomposition can be monitored in real time using small-angle scattering. Information about the microstructure can be deduced from measurements of the structure factor-a quantity directly proportional to the scattered intensity. While the time evolution of the structure factor can be measured relatively easily, modeling it has proved to be much more difficult.

View Article and Find Full Text PDF

Purpose: Depression among college students is a growing concern that negatively affects academic performance, emotional well-being, and career planning. Existing diagnostic methods are often slow, subjective, and inaccessible, underscoring the need for automated systems that can detect depressive symptoms through digital behavior, particularly on social media platforms.

Method: This study proposes a novel natural language processing (NLP) framework that combines a RoBERTa-based Transformer with gated recurrent unit (GRU) layers and multimodal embeddings.

View Article and Find Full Text PDF