98%
921
2 minutes
20
No sooner is an experience over than its neural representation begins to be transformed through memory reactivation during offline periods. The lion's share of prior research has focused on understanding offline reactivation within the hippocampus. However, it is hypothesized that consolidation processes involve offline reactivation in cortical regions as well as coordinated reactivation in the hippocampus and cortex. Using fMRI, we presented novel and repeated paired associates to participants during encoding and measured offline memory reactivation for those events during an immediate post-encoding rest period. post-encoding reactivation frequency of repeated and once-presented events did not differ in the hippocampus. However, offline reactivation in widespread cortical regions and hippocampal-cortical coordinated reactivation were significantly enhanced for repeated events. These results provide evidence that repetition might facilitate the distribution of memory representations across cortical networks, a hallmark of systems-level consolidation. Interestingly, we found that offline reactivation frequency in both hippocampus and cortex explained variance in behavioral success on an immediate associative recognition test for the once-presented information, potentially indicating a role of offline reactivation in maintaining these novel, weaker, memories. Together, our findings highlight that endogenous offline reactivation can be robustly and significantly modulated by study repetition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459139 | PMC |
http://dx.doi.org/10.1073/pnas.2405929121 | DOI Listing |
Nat Commun
August 2025
State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
Understanding how we learn about the value and structure of our environment is central to neurocognitive theories of many psychiatric and neurological disorders. Learning processes have been extensively studied during performance of behavioural tasks (online learning) but less so in relation to resting (offline) states. A candidate mechanism for such offline learning is replay, the sequential neural reactivation of past experiences.
View Article and Find Full Text PDFFront Behav Neurosci
August 2025
Department of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom.
Slow-wave sleep (SWS) plays a pivotal role in memory consolidation, and electroencephalography (EEG) has provided critical insights into the neural mechanisms underlying these processes. In this mini-review, we discuss how SWS supports the processing of both declarative and procedural memory, in addition to higher cognitive functioning. We focus on the latest evidence from human EEG studies that examine temporal regularities alongside those that have demonstrated the coordinated interplay between slow oscillations, sleep spindles, and hippocampal ripples.
View Article and Find Full Text PDFSci Rep
July 2025
Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
Perceptual learning can significantly improve visual sensitivity even in fully matured adults. However, the ability to generalize learning to untrained conditions is often limited. While traditionally, perceptual learning is attributed to practice-dependent plasticity mechanisms, recent studies suggest that brief memory reactivations can efficiently improve visual perception, recruiting higher-level brain regions.
View Article and Find Full Text PDFNat Commun
April 2025
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
Every day, we experience new episodes and store new memories. Although memories are stored in corresponding engram cells, how different sets of engram cells are selected for current and next episodes, and how they create their memories, remains unclear. Here we show that in male mice, hippocampal CA1 neurons show an organized synchronous activity in prelearning home cage sleep that correlates with the learning ensembles only in engram cells, termed preconfigured ensembles.
View Article and Find Full Text PDFProc Jpn Acad Ser B Phys Biol Sci
March 2025
Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels.
View Article and Find Full Text PDF