A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Slow-wave sleep as a key player in offline memory processing: insights from human EEG studies. | LitMetric

Slow-wave sleep as a key player in offline memory processing: insights from human EEG studies.

Front Behav Neurosci

Department of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Slow-wave sleep (SWS) plays a pivotal role in memory consolidation, and electroencephalography (EEG) has provided critical insights into the neural mechanisms underlying these processes. In this mini-review, we discuss how SWS supports the processing of both declarative and procedural memory, in addition to higher cognitive functioning. We focus on the latest evidence from human EEG studies that examine temporal regularities alongside those that have demonstrated the coordinated interplay between slow oscillations, sleep spindles, and hippocampal ripples. We discuss how the precise temporal coupling of these oscillatory events facilitates memory transfer from the hippocampus to the neocortex, enhancing neuronal reactivation and optimizing long-term memory consolidation. We also examine how disruptions to SWS-due to lifestyle factors, ageing, neurological disorders, or pharmacological agents-can impair slow-wave activity and spindle dynamics, leading to memory deficits. Further, we highlight emerging neuromodulation techniques, such as transcranial direct current stimulation and closed-loop auditory stimulation, which harness EEG-based insights to enhance SWS and improve memory outcomes. These findings collectively demonstrate the potential of integrating EEG methodologies with targeted therapeutic interventions to restore SWS, optimize memory consolidation and enhance cognitive health. Finally, we recommend directions for future research aimed at refining these approaches, evaluating their long-term efficacy across diverse populations, and exploring new strategies to preserve memory function in the context of healthy ageing and neurological disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12364950PMC
http://dx.doi.org/10.3389/fnbeh.2025.1620544DOI Listing

Publication Analysis

Top Keywords

memory consolidation
12
memory
9
slow-wave sleep
8
human eeg
8
eeg studies
8
ageing neurological
8
sleep key
4
key player
4
player offline
4
offline memory
4

Similar Publications