Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite high theoretical efficiencies and rapid improvements in performance, high-efficiency ≈1.2 eV mixed Sn-Pb perovskite solar cells (PSCs) generally rely on poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT: PSS) as the hole transport layer (HTL); a material that is considered to be a bottleneck for long-term stability due to its acidity and hygroscopic nature. Seeking to replace PEDOT: PSS with an alternative HTL with improved atmospheric and thermal stability, herein, a silole derivative (Silole-COOH) tuned with optimal electronic properties and efficient carrier transport by incorporating a carboxyl functional group is designed, which results in an optimal band alignment for hole extraction from Sn-Pb perovskites and robust air and thermal stability. Thin films composed of the Silole-COOH exhibit superior conductivity and carrier mobility compared to PEDOT: PSS, in addition to reduced nonradiative quasi-Fermi-level splitting losses at the HTL/perovskite interface and improved quality of Sn-Pb perovskite. Replacement of PEDOT: PSS with Silole-COOH leads to 23.2%-efficient single-junction Sn-Pb PSCs, 25.8%-efficient all-perovskite tandems, and long operating stability in ambient air.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202411968DOI Listing

Publication Analysis

Top Keywords

pedot pss
16
hole transport
8
transport layer
8
solar cells
8
sn-pb perovskite
8
thermal stability
8
multi-functional silole
4
silole hole
4
layer efficient
4
efficient stable
4

Similar Publications

Improving the thermoelectric power factor of PEDOT:PSS with 4,4'-bipyridine and LiBF .

Open Res Eur

August 2025

Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castelló de la Plana, Valencian Community, 12006, Spain.

Background: Thermoelectric (TE) materials can directly convert heat into electricity, which is beneficial for energy sustainability. Organic conducting polymers are TE materials that have drawn significant attention owing to different favorable properties, such as good processability, availability, flexibility, and intrinsically low thermal conductivity. Among the organic TEs, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is the most extensively investigated material because of its stability and high electrical conductivity.

View Article and Find Full Text PDF

Charge Transport, Dielectric Response, and Magnetoconductance in Organic Diodes Based on a Novel P18‑8 Conjugated Polymer for Magnetic Sensor Applications.

ACS Omega

August 2025

Laboratoire Matériaux Avancés et Phénomènes Quantiques, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, Tunis 2092, Tunisia.

This paper reports the use of P18-8, a novel conjugated polymer combining poly-(1,4-phenylene-ethynylene) and poly-(1,4-phenylene-vinylene), in the fabrication of an organic diode with the structure ITO/PEDOT:PSS/P18-8/LiF/Al. The electrical properties of the fabricated device were characterized using impedance spectroscopy across a frequency range of 100 Hz to 1 MHz at various applied voltages. The current density-voltage (-) characteristic exhibited ohmic behavior at low applied voltages, while at higher voltages, it conformed to the space charge limited current (SCLC) theory.

View Article and Find Full Text PDF

This paper presents a strategy for noise suppression and stability enhancement of organic photodetectors (OPDs) by introducing pH-neutralized and transfer-laminated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole-transporting layer (HTL). Although PEDOT:PSS is widely used as an HTL material, its intrinsic acidity and structural instability hinder the performance of the OPD. Here, imidazole-induced neutralization promotes a linear entangled structure, while transfer lamination enables controlled PSS domain distribution.

View Article and Find Full Text PDF

Organotypic 3D tissue models require precise electrophysiological interfaces to study function and disease. Multi-electrode arrays (MEAs) are essential for recording and stimulation, yet conventional fabrication methods are costly and time-intensive. This study demonstrates aerosol jet printing (AJP) of gold nanoparticles onto flexible polyimide substrates to produce fully gold, biocompatible MEAs for rapid customization of MEAs.

View Article and Find Full Text PDF

Active manipulation of terahertz (THz) waves is important for future optoelectronic applications, but most approaches rely on volatile or slow actuation, limiting efficiency and stability. Here, we report a nonvolatile, low-voltage tunable THz transmission device based on electrochemical modulation of a conductive polymer thin film integrated with metallic nanoresonators. A thin film of PEDOT:PSS, deposited via a single-step spin-coating process onto the nanoresonator array, enables efficient modulation of resonance-enhanced THz transmission with a gate voltage of less than 1 V.

View Article and Find Full Text PDF