98%
921
2 minutes
20
Microelectromechanical system-based microphones demand high ingress protection levels with regard to their use in harsh environment. Here, we develop environmental protective components comprising polyimide nanofibers combined onto polyether ether ketone fabric meshes and subsequently appraise their impact on the electroacoustic properties of high signal-to-noise-ratio microelectromechanical system-based microphones via industry-standard characterizations and theoretical simulations. Being placed directly on top of the microphone sound port, the nanofiber mesh die-cut parts with an inner diameter of 1.4 mm result in signal-to-noise-ratio and insertion losses of (2.05 ± 0.16) dB(A) and (0.30 ± 0.11) dBFS, respectively, in electroacoustic measurements. Hence, a high signal-to-noise-ratio value of (70.05 ± 0.17) dB(A) can be maintained by the mesh-protected microphone system. Due to their high temperature stability, acoustic performance, environmental robustness, and industry-scale batch production, these nanofibrous meshes reveal high potential to be practically implemented in high-market-volume applications of packaged microelectromechanical system-based microphones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420236 | PMC |
http://dx.doi.org/10.1038/s44172-024-00283-4 | DOI Listing |
ACS Sens
September 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
High-fidelity biosignal monitoring is essential for daily health tracking and the diagnosis of chronic diseases. However, developing bioelectrodes capable of withstanding repeated use and mechanical deformation on wet tissue surfaces remains a significant challenge. Here, we present a robust and ultrathin bioelectrode (RUB), featuring a mechanically heterogeneous architecture and a thickness of ∼3 μm.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin, 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland. Electronic address:
Surface electromyography (sEMG) is the measurement of the electrical activity of muscle and is extensively used in fundamental research and across many applications in health and sport. Conventional surface electrode technology can suffer from poor signal quality, particularly when used outside the laboratory, requires careful skin preparation prior to electrode application, and can be challenging when used for long-term recording. These limitations have challenged the translation of sEMG to widespread clinical application.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830017, China; State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy
Given the pivotal role of Flap endonuclease 1 (FEN1) in tumor pathogenesis and progression, the advancement of its activity and inhibitor assays holds significant importance for cancer research and drug screening. Herein, we proposed a convenient, visual and sensitive colorimetric biosensing platform for FEN1 activity detection by integrating the robust signal amplification power of rolling circle amplification (RCA), the target enrichment capability of magnetic beads (MB), and the high efficiency and visualization of urease-mediated litmus test. Based on the significant color transition with a clear response mechanism, quantitative analysis can be achieved by either spectroscopic or smartphone-based detection.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Radiology, Stony Brook University, New York, USA.
Background: In contrast-enhanced digital mammography (CEDM) and contrast-enhanced digital breast tomosynthesis (CEDBT), low-energy (LE) and high-energy (HE) images are acquired after injection of iodine contrast agent. Weighted subtraction is then applied to generate dual-energy (DE) images, where normal breast tissues are suppressed, leaving iodinated objects enhanced. Currently, clinical systems employ a dual-shot (DS) method, where LE and HE images are acquired with two separate exposures.
View Article and Find Full Text PDFNMR Biomed
October 2025
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Understanding gastric physiology in rodents is critical for advancing preclinical neurogastroenterology research. However, existing techniques are often invasive, terminal, or limited in resolution. This study aims to develop a non-invasive, standardized MRI protocol capable of capturing whole-stomach dynamics in anesthetized rats with high spatiotemporal resolution.
View Article and Find Full Text PDF