Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and matrix processing units to manage analog update/read paths and perform precise output sensing with feedback-based current scaling on the ECRAM array. The 250nm CMOS neuromorphic chip was tested with a 32 × 32 ECRAM synaptic array, achieving linear and symmetric updates and accurate read operations. The proposed circuit system updates the 32 × 32 ECRAM across 100 levels, maintaining consistent synaptic weights, and operates with an output error rate of up to 2.59% per column. It consumes 5.9 mW of power excluding the ECRAM array and achieves 97.3% inference accuracy on the MNIST dataset, close to the software-confirmed 97.78%, with only the final layer (64 × 10) mapped to the ECRAM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2024.3465610 | DOI Listing |