Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Target volume delineation is routinely performed in postoperative radiotherapy (RT) for breast cancer patients, but it is a time-consuming process. The aim of the present study was to validate the quality, clinical usability and institutional-specific implementation of different auto-segmentation tools into clinical routine.
Methods: Three different commercially available, artificial intelligence-, ESTRO-guideline-based segmentation models (M1-3) were applied to fifty consecutive reference patients who received postoperative local RT including regional nodal irradiation for breast cancer for the delineation of clinical target volumes: the residual breast, implant or chestwall, axilla levels 1 and 2, the infra- and supraclavicular regions, the interpectoral and internal mammary nodes. Objective evaluation metrics of the created structures were conducted with the Dice similarity index (DICE) and the Hausdorff distance, and a manual evaluation of usability.
Results: The resulting geometries of the segmentation models were compared to the reference volumes for each patient and required no or only minor corrections in 72 % (M1), 64 % (M2) and 78 % (M3) of the cases. The median DICE and Hausdorff values for the resulting planning target volumes were 0.87-0.88 and 2.96-3.55, respectively. Clinical usability was significantly correlated with the DICE index, with calculated cut-off values used to define no or minor adjustments of 0.82-0.86. Right or left sided target and breathing method (deep inspiration breath hold vs. free breathing) did not impact the quality of the resulting structures.
Conclusion: Artificial intelligence-based auto-segmentation programs showed high-quality accuracy and provided standardization and efficient support for guideline-based target volume contouring as a precondition for fully automated workflows in radiotherapy treatment planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415814 | PMC |
http://dx.doi.org/10.1016/j.ctro.2024.100855 | DOI Listing |