98%
921
2 minutes
20
The increased incidence of dengue poses a substantially global public health challenge. There are no approved antiviral drugs to treat dengue infections. Ivermectin, an old anti-parasitic drug, had no effect on dengue viremia, but reduced the dengue non-structural protein 1 (NS1) in a clinical trial. This is potentially important, as NS1 may play a causal role in the pathogenesis of severe dengue. This study established an in-host model to characterize the plasma kinetics of dengue virus and NS1 with host immunity and evaluated the effects of ivermectin, using a population pharmacokinetic-pharmacodynamic (PK-PD) modeling approach, based on two studies in acute dengue fever: a placebo-controlled ivermectin study in 250 adult patients and an ivermectin PK-PD study in 24 pediatric patients. The proposed model described adequately the observed ivermectin pharmacokinetics, viral load, and NS1 data. Bodyweight was a significant covariate on ivermectin pharmacokinetics. We found that ivermectin reduced NS1 with an EC of 67.5 μg/mL. In silico simulations suggested that ivermectin should be dosed within 48 h after fever onset, and that a daily dosage of 800 μg/kg could achieve substantial NS1 reduction. The in-host dengue model is useful to assess the drug effect in antiviral drug development for dengue fever.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646939 | PMC |
http://dx.doi.org/10.1002/psp4.13233 | DOI Listing |
Epidemiol Serv Saude
September 2025
Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brazil.
Objective: To analyze the temporal trend of dengue incidence and lethality rates and the proportions of its serotypes, in the different macro-regions of Brazil, between 2001 and 2022. In particular, the immediate and gradual effects of these indicators were verified in the periods before and after the publication of the National Guidelines for the Prevention and Control of Dengue Epidemics.
Methods: This was an interrupted time series analysis.
New Microbes New Infect
October 2025
Takeda Pharmaceuticals International AG, Zurich, Switzerland.
Background: Dengue is a mosquito-borne viral infection with growing global impact, including international travellers travelling to and from endemic regions. This systematic literature review aimed to assess the clinical and economic burden of dengue in travellers from non-endemic countries.
Methods: This systematic review was conducted following the PRISMA guidelines to assess the incidence, prevalence, mortality, healthcare resource use, and costs of dengue fever in travellers between non-endemic and endemic regions.
Appl Biosaf
August 2025
Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Introduction: Dengue virus (DENV) poses a significant global health threat, particularly in tropical and subtropical regions, where it is primarily transmitted by spp. mosquitoes. Its biosafety and biosecurity management present unique challenges due to both its vector-borne nature and rare instances of nonvector transmission.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.
Dengue virus (DENV) is an important arthropod-borne virus that poses a global health threat, with half of the world's population at risk of infection. Currently, there is a lack of safe and effective vaccines for its prevention. Antibody-dependent enhancement (ADE) occurs when cross-reactive antibodies fail to neutralize heterologous DENV serotypes effectively, facilitating viral entry into Fc receptor-bearing cells and leading to more severe disease.
View Article and Find Full Text PDFMed
September 2025
Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Clinical Translational Research, Singapore General Hospital, Singapo
Background: All three dengue vaccines that have completed phase 3 clinical trials have shown greater efficacy in dengue-seropositive compared to dengue-seronegative individuals. This includes the live-attenuated tetravalent dengue vaccine TAK-003, where immunogenicity in baseline seronegative individuals remains lower after two doses, despite seroconversion after the first dose, compared to baseline seropositive individuals after one dose.
Methods: A whole-genome microarray was used to analyze the host response to TAK-003.