Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report a simulation methodology to quantitatively predict the thermodynamic behaviour (phase diagrams) of polymer mixtures, that exhibit phases with broken orientational symmetry. Our system consists of a binary mixture of short oligomers ( = 4) and long rod-like mesogens ( = 8). Using coarse-grained molecular dynamics (CGMD) simulations we infer the topology of the temperature-dependent free energy landscape, from the probability distributions of the components for a range of compositions. The mixture exhibits nematic (N) and smectic phases (Sm-A) as a function of two temperature scales, , that governs the demixing transition, and the nematic-isotropic temperature. Thus in addition to the isotropic (I), a nematic (N) phases observed in simulations of similar systems earlier we report the formation of a new entropy-stabilized phase separated smectic-A (Sm-A) phase with alternating mesogen-rich and oligomer-rich layers. Using the mean-field free energy for polymer-dispersed liquid crystals (PDLCs), with suitably chosen parameter values, we construct a mean-field phase diagram that matches those obtained from CGMD simulations. Our results are applicable to mixtures of synthetic and biological macromolecules that undergo phase separation and are orientable, thereby giving rise to the liquid crystalline phases. Our proposed methodology has a distinct advantage over other computational techniques in its applicability to systems with complex molecular interactions and in capturing the coarsening dynamics of systems involving multiple order parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm01005aDOI Listing

Publication Analysis

Top Keywords

liquid crystals
8
coarse-grained molecular
8
molecular dynamics
8
cgmd simulations
8
free energy
8
phase
6
phase behavior
4
behavior polymer
4
polymer dispersed
4
dispersed liquid
4

Similar Publications

On-liquid surface synthesis of diyne-linked two-dimensional polymer crystals.

Nat Commun

September 2025

Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.

The synthesis of thin crystalline two-dimensional polymers (2DPs) typically relies on reversible dynamic covalent reactions. While substantial progress has been made in solution-based and interfacial syntheses, achieving 2DPs through irreversible carbon-carbon coupling reactions remains a formidable challenge. Herein, we present an on-liquid surface (a mixture of N,N-dimethylacetamide and water, DMAc-HO) synthesis method for constructing diyne-linked 2DP (DY2DP) crystals via Glaser coupling, assisted by a perfluoro-surfactant (PFS) monolayer.

View Article and Find Full Text PDF

An amphiphilic peptide with unnatural amino acids as an alignment medium for RDC measurements.

Magn Reson Lett

May 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution. Herein, an assembled amphiphilic peptide alignment medium, i.e.

View Article and Find Full Text PDF

Self-Transformation of 2D SnSe Nanosheets into SnO/Se Nanocomposites for Efficient Photodetection.

ACS Appl Mater Interfaces

September 2025

School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong518055, China.

The rapid development of liquid exfoliation technology has boosted fundamental research and applications of ultrathin two-dimensional (2D) materials. However, the small-sized exfoliated 2D materials with a high specific surface area may exhibit poor chemical stability. Understanding the stability of 2D crystals will be significant for their preservation and service and for the development of new stable phases via the spontaneous transition from unstable structures.

View Article and Find Full Text PDF

Nematic Liquid Crystals (LCs), noted for their simple molecular alignment and broad use in optoelectronics, remain unmodified for over a century. However, in 2017, a unique polar phase, the ferroelectric nematic (N), is confirmed. Subsequently, in 2024, the revolutionary spontaneous mirror symmetry breaking of ferroelectric twist-bend nematic chiral structures (N phase) is demonstrated.

View Article and Find Full Text PDF

Tracking phase transitions of tactoids in sulfated cellulose nanocrystals using second harmonic generation microscopy.

Carbohydr Polym

November 2025

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.

View Article and Find Full Text PDF