Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Diffuse large B cell lymphoma (DLBCL) is a heterogeneous and aggressive B cell malignancy that accounts for about 30 % of non-Hodgkin lymphomas. The current standard treatment for DLBCL is rituximab plus chemotherapy, but many patients are refractory or relapse, indicating the need for improved understanding of its molecular pathology. T cell exhaustion is a state of dysfunction or impairment that occurs in chronic infections or cancers, and is associated with poor prognosis in DLBCL. However, the molecular mechanisms of T cell exhaustion in DLBCL are poorly understood. In this study, we performed a comprehensive analysis of T cell exhaustion in DLBCL using public single-cell transcriptome data. We identified different subtypes of T cells and characterized their gene expression features. We found that DLBCL had a significantly higher proportion of exhausted T cells than normal tonsil, and that exhausted T cells had distinct gene expression signatures from non-exhausted T cells. These signatures included genes related to inhibitory receptors, cytokines, transcription factors and metabolic enzymes. We also found that ID3 gene was significantly upregulated in exhausted T cells in DLBCL, which may play a key role in T cell exhaustion. We constructed a protein-protein interaction network, identifying major hub proteins involved in T cell exhaustion or migration. We also performed KEGG and GO enrichment analysis for the differentially expressed genes between exhausted and non-exhausted T cells, and found important signaling pathways related to T cell exhaustion in DLBCL. Our results provide new insights into the molecular mechanisms underlying T cell exhaustion and offer novel therapeutic targets for this complex disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2024.107588 | DOI Listing |