Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Biosurfactants are amphiphilic biomolecules with promising tensoative and emulsifying properties that find application in the most varied industrial sectors: environment, food, agriculture, petroleum, cosmetics, and hygiene. In the current work, a 2 full-factorial design was performed to evaluate the effect and interactions of pineapple peel and corncob as substrates for biosurfactant production by Bacillus subtilis LMA-ICF-PC 001. In a previous stage, an alkaline pretreatment was applied to corncob samples to extract the xylose-rich hydrolysate. The results indicated that pineapple peel extract and xylose-rich hydrolysate acted as partial glucose substitutes, minimizing production costs with exogenous substrates. Biosurfactant I (obtained at 8.11% pineapple peel extract, 8.11% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited a significant surface tension reduction (52.37%) and a promising bioremediation potential (87.36%). On the other hand, biosurfactant III (obtained at 8.11% pineapple peel extract, 31.89% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited the maximum emulsification index in engine oil (69.60%), the lowest critical micellar concentration (68 mg/L), and the highest biosurfactant production (5.59 g/L). These findings demonstrated that using pineapple peel extract and xylose-rich hydrolysate from corncob effectively supports biosurfactant synthesis by B. subtilis, reinforcing how agro-industrial wastes can substitute traditional carbon sources, contributing to cost reduction and environmental sustainability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-35044-5 | DOI Listing |