98%
921
2 minutes
20
Background: Perfusion magnetic resonance imaging (MRI)s plays a central role in the diagnosis and monitoring of neurovascular or neurooncological disease. However, conventional processing techniques are limited in their ability to capture relevant characteristics of the perfusion dynamics and suffer from a lack of standardization.
Purpose: We propose a physics-informed deep learning framework which is capable of analyzing dynamic susceptibility contrast perfusion MRI data and recovering the dynamic tissue response with high accuracy.
Methods: The framework uses physics-informed neural networks (PINNs) to learn the voxel-wise TRF, which represents the dynamic response of the local vascular network to the contrast agent bolus. The network output is stabilized by total variation and elastic net regularization. Parameter maps of normalized cerebral blood flow (nCBF) and volume (nCBV) are then calculated from the predicted residue functions. The results are validated using extensive comparisons to values derived by conventional Tikhonov-regularized singular value decomposition (TiSVD), in silico simulations and an in vivo dataset of perfusion MRI exams of patients with high-grade gliomas.
Results: The simulation results demonstrate that PINN-derived residue functions show a high concordance with the true functions and that the calculated values of nCBF and nCBV converge towards the true values for higher contrast-to-noise ratios. In the in vivo dataset, we find high correlations between conventionally derived and PINN-predicted perfusion parameters (Pearson's rho for nCBF: and nCBV: ) and very high indices of image similarity (structural similarity index for nCBF: and for nCBV: ).
Conclusions: PINNs can be used to analyze perfusion MRI data and stably recover the response functions of the local vasculature with high accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.17415 | DOI Listing |
Eur Heart J Cardiovasc Imaging
September 2025
Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Aims: Fetal circulation undergoes complex changes in congenital heart disease (CHD) that are challenging to assess with fetal echocardiography. This study aimed to assess clinical feasibility and diagnostic value of 4D flow cardiac magnetic resonance (CMR) in fetal CHD.
Methods And Results: Pregnant women in advanced third trimester pregnancy with fetal CHD were prospectively recruited for fetal CMR between 08/2021 and 11/2024.
BMC Res Notes
September 2025
Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.
Objectives: Small cell lung cancer (SCLC) accounts for approximately 15% of lung tumors and is marked by aggressive growth and early metastatic spread. In this study, we used two SCLC mouse models with differing tumor mutation burdens (TMB). To investigate tumor composition, spatial architecture, and interactions with the surrounding microenvironment, we acquired multiplexed images of mouse lung tumors using imaging mass cytometry (IMC).
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
November 2025
University of Basel, Department of Clinical Research (DKF), University Psychiatric Clinics, Translational Neurosciences, Basel, Switzerland.
Background: The hippocampus plays a critical role in psychosis, with reduced volume observed across the psychosis continuum. These structural changes are associated with cognitive deficits, symptom severity, and increased risk of psychosis progression. Elevated hippocampal perfusion and glutamate/GABA (gamma-aminobutyric acid) imbalance further suggest metabolic dysregulation as a key mechanism.
View Article and Find Full Text PDFNeuro Oncol
September 2025
Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA.
Background: Disruption of the blood-brain barrier (BBB) in high-grade brain tumors is characterized by contrast accumulation on diagnostic imaging. This window of opportunity study correlates contrast imaging features with the tumor distribution of BBB-permeable (levetiracetam) and -impermeable (cefazolin) drugs.
Methods: Patients with a clinical diagnosis of a high-grade brain tumor underwent MRI for surgical planning.
Eur Heart J Cardiovasc Imaging
September 2025
Bosch Health Campus, Robert Bosch Hospital, Department of Cardiology and Angiology, Stuttgart, Germany.
Aims: For many years, visual assessment has been the mainstay of detecting obstructive coronary artery disease (CAD) by stress perfusion cardiovascular magnetic resonance (S-CMR). Recently, fully automated quantitative assessment of myocardial blood flow (MBF) has been introduced. The value of MBF quantification in patients with coronary chronic total occlusion (CTO) is unknown.
View Article and Find Full Text PDF