98%
921
2 minutes
20
More than 17 % of all infectious diseases are caused by vector-borne diseases resulting in more than 1 billion cases and over 1 million deaths each year. Of these malaria continues to be a global burden in over eighty countries. As societies become more digitalised, the availability of geospatially enabled health and disease information will become more abundant. With this, the ability to assess health and disease risks in real-time will become a reality. The purpose of this study was to examine how geographic information, geospatial technologies and spatial data science are being used to reduce the burden of vector-borne diseases such as malaria and explore the opportunities that lie ahead with GeoAI and other geospatial technology advancements. Malaria is a dynamic and complex system and as such a range of data and approaches are needed to tackle different parts of the malaria cycle at different local and global scales. Geospatial technologies provide an integrated framework vital for monitoring, analysing and managing vector-borne diseases. GeoAI and technological advancements are useful for enhancing real-time assessments, accelerating the decision making process and spatial targeting of interventions. Training is needed to enhance the use of geospatial information for the management of vector-borne diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2024.107406 | DOI Listing |
Interact J Med Res
September 2025
Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
Background: Dengue fever remains the most significant vector-borne disease in Southeast Asia, imposing a substantial burden on public health systems. Global warming and increased international mobility may exacerbate the disease's prevalence. Furthermore, the unprecedented COVID-19 pandemic may have influenced the epidemiological patterns of dengue.
View Article and Find Full Text PDFParasite
September 2025
Parasitology Department, São Paulo University, 1374 Av. Prof. Lineu Prestes, São Paulo, State of São Paulo 05508-000, Brazil.
Understanding why Diptera, such as mosquitoes and sand flies, feed on humans is crucial in defining them as vectors of diseases such as malaria, dengue fever, Zika virus, and leishmaniasis. Determining their attraction to humans (anthropophily) helps in assessing the risk of disease transmission, designing effective vector control strategies, and monitoring the effectiveness of existing control measures. An important question is whether they are specifically attracted to humans in preference to other mammals or whether there is something else at play.
View Article and Find Full Text PDFPLoS One
September 2025
Instituto de Física, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
Dengue fever remains a major public health concern, requiring continuous efforts to mitigate its impact. This study investigates the influence of key temperature-dependent parameters on dengue transmission dynamics in Foz do Iguaçu, a tri-border municipality in southern Brazil, using a mathematical model based on a system of ordinary differential equations. The fitted model aligns well with observed data.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
Background: Soil-transmitted helminth (STH) infections remain a public health problem in Uganda despite biannual national deworming campaigns implemented since the early 2000s. Recent surveys have indicated a heterogeneous STH infection prevalence, suggesting that the current blanket deworming strategy may no longer be cost-effective. This study identified infection predictors, estimated the geographic distribution of STH infection prevalence by species, and calculated deworming needs for school-age children (SAC).
View Article and Find Full Text PDFVirulence
December 2025
Clinical HIV Laboratory, JSPS Government Homeopathic Medical College, Hyderabad, Telangana, India.
, a macrophage-residing parasite, expresses virulence factors that intercept macrophage signaling and inflicts leishmaniasis. Recently described virulence factors- eEF-1α (eukaryotic elongation factor), LmjF_36_3850 ( F_36_3850), LdTyrPIP_22 (LDBPK_220120.1) and LmjMAPK ( mitogen activated protein kinase)-4/12 selectively modulate the activities of kinases, phosphatases and metabolism of phosphatidylinositol influencing the infection outcome.
View Article and Find Full Text PDF