98%
921
2 minutes
20
Lung cancer is the most common causes of death among all cancer-related diseases. A lung scan examination of the patient is the primary diagnostic technique. This scan analysis pertains to an MRI, CT, or X-ray. The automated classification of lung cancer is difficult due to the involvement of multiple steps in imaging patients' lungs. In this manuscript, human lung cancer classification and comprehensive analysis using different machine learning techniques is proposed. Initially, the input images are gathered using lung cancer dataset. The proposed method processes these images using image-processing techniques, and further machine learning techniques are utilized for categorization. Seven different classifiers including the k-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), multinomial naive Bayes (MNB), stochastic gradient descent (SGD), random forest (RF), and multi-layer perceptron (MLP) classifier are used, which classifies the lung cancer as malignant and benign. The performance of the proposed approach is examined using performances metrics, like positive predictive value, accuracy, sensitivity, and f-score are evaluated. Among them, the performance of the MLP classifier provides 25.34%, 45.39%, 15.39%, 41.28%, 22.17%, and 12.12% higher accuracy than other KNN, SVM, DT, MNB, SGD, and RF respectively. RESEARCH HIGHLIGHTS: Lung cancer is a leading cause of cancer-related death. Imaging (MRI, CT, and X-ray) aids diagnosis. Automated classification of lung cancer faces challenges due to complex imaging steps. This study proposes human lung cancer classification using diverse machine learning techniques. Input images from lung cancer dataset undergo image processing and machine learning. Classifiers like k-nearest neighbors, support vector machine, decision tree, multinomial naive Bayes, stochastic gradient descent, random forest, and multi-layer perceptron (MLP) classify cancer types; MLP excels in accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.24682 | DOI Listing |
JCO Precis Oncol
September 2025
Shu-Ning Li, MS, Jun-Nv Xu, MD, PhD,and Nan-Nan Ji, MD, PhD, Department of Radiation Oncology, Cancer Treatment Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, China, Ming Xue, MS, Department of Outpatient, The Second Affiliated Hospital of Hainan Medical University, Hai
JCO Precis Oncol
September 2025
Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA.
Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.
View Article and Find Full Text PDFJCO Precis Oncol
September 2025
Monica F. Chen, MD, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, Daniel Gomez, MD, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, and Helena A. Yu, MD, Division of Solid Tumor Oncology, Depart
J Bras Pneumol
September 2025
. Rede D'Or, São Paulo (SP), Brasil.
J Bras Pneumol
September 2025
. Departamento de Pneumologia, Centro Hospitalar Universitário de São João, Porto, Portugal.
Objectives: The 9th edition of the Tumor, Node, Metastasis (TNM-9) lung cancer classification is set to replace the 8th edition (TNM-8) starting in 2025. Key updates include the splitting of the mediastinal nodal category N2 into single- and multiple-station involvement, as well as the classification of multiple extrathoracic metastatic lesions as involving a single organ system (M1c1) or multiple organ systems (M1c2). This study aimed to assess how the TNM-9 revisions affect the final staging of lung cancer patients and how these changes correlate with overall survival (OS).
View Article and Find Full Text PDF