98%
921
2 minutes
20
Halogen bonding is a valuable interaction in drug design, offering an unconventional way to influence affinity and selectivity by leveraging the halogen atoms' ability to form directional bonds. The present study evaluates halogen-water interactions within protein binding sites, demonstrating that targeting a water molecule via halogen bonding can in specific cases contribute beneficially to ligand binding. In solving and examining the crystal structure of 2-cyclopentyl-7-iodo-1-indole-3-carbonitrile bound to DYRK1a kinase, we identified a notable iodine-water interaction, where water accepts a halogen bond with good geometric and energetic features. This starting point triggered further investigations into the prevalence of such interactions across various halogen-bearing ligands (chlorine, bromine, iodine) in the PDB. Using QM calculations (MP2/TZVPP), we highlight the versatility and potential benefits of such halogen-water interactions, particularly when the water molecule is a stable part of the binding site's structured environment. While the interaction energies with water are lower compared to other typical halogen bond acceptors, we deem this different binding strength essential for reducing desolvation costs. We suggest that "interstitial" water molecules, as stable parts of the binding site engaging in multiple strong interactions, could be prime targets for halogen bonding. Further systematic studies, combining high-resolution crystal structures and quantum chemistry, are required to scrutinize whether halogen bonding on water is more than a "drop in the ocean".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.4c00834 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
September 2025
Chemistry and Biochemistry Department Missouri State University,Springfield MO 65897 USA.
The structure of the 1:1 cocrystal formed between 1-bromo-3,5-di-nitro-benzene and ,-di-methyl-pyridin-4-amine that features a C-Br⋯N halogen bond is reported. The cocrystal, CHBrNO·CHN, crystalizes in the monoclinic space group 2/ with = 4. Hirshfeld surface analysis and inter-molecular inter-action energies within the cocrystal structure are reported.
View Article and Find Full Text PDFACS Omega
September 2025
Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de Mexico, Mexico.
In this study, we introduce a set of novel computational strategies based on second-order Mo̷ller-Plesset perturbation theory (MP2), enhanced through acceleration techniques, such as the resolution of the identity (RI). These approaches are further refined via spin-component scaling (SCS), following Grimme's methodology, and are specifically calibrated for the quantitatively accurate prediction of weak interaction energiesinteractions that play a critical role in biological systems. Among the developed methods, three variants exhibit outstanding performance, surpassing the accuracy of several state-of-the-art, nondynamical electronic structure techniques.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Chemistry, Research Centre HPT Arts and RYK Science College (Affiliated to S. P. Pune University) Nashik Maharashtra 422005 India
The persistent threat of pathogenic microorganisms demands the development of innovative scaffolds with dual antibacterial and antifungal activities. Herein, we report the synthesis and characterization of a novel series of benzothiazole-thiazole hybrids (4a-4f) a three-step route, confirmed by NMR and MS analyses. The compounds were screened against Gram-positive, Gram-negative, mycobacterial, and fungal strains using disk diffusion and REMA assays.
View Article and Find Full Text PDFChem Sci
August 2025
College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University Jiujiang 332005 China
BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.
View Article and Find Full Text PDFBioorg Chem
August 2025
Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan. Electronic address:
This study explores the synthesis of new acyl hydrazide derivatives of mefenamic acid as potent analgesics with enhanced safety profiles. Thirteen compounds were synthesized via hydrazide intermediate functionalization and characterized spectroscopically (H/C NMR, and HRESI-MS). In vivo evaluation (acetic acid writhing, formalin paw licking, and tail immersion tests) revealed significant peripheral and central analgesic activity, with compounds 5 (N'-(4-chlorobenzoyl)) and 11 (N'-(2,4-dichlorophenyl)) outperforming mefenamic acid (81.
View Article and Find Full Text PDF