Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Uremic toxins contributing to increased risk of death remain largely unknown. We used untargeted metabolomics to identify plasma metabolites associated with mortality in patients receiving maintenance hemodialysis.

Methods: We measured metabolites in serum samples from 522 Longitudinal US/Canada Incident Dialysis (LUCID) study participants. We assessed the association between metabolites and 1-year mortality, adjusting for age, sex, race, cardiovascular disease, diabetes, body mass index, serum albumin, Kt/Vurea, dialysis duration, and country. We modeled these associations using limma, a metabolite-wise linear model with empirical Bayesian inference, and 2 machine learning (ML) models: Least absolute shrinkage and selection operator (LASSO) and random forest (RF). We accounted for multiple testing using a false discovery rate (pFDR) adjustment. We defined significant mortality-metabolite associations as pFDR < 0.1 in the limma model and metabolites of at least medium importance in both ML models.

Results: The mean age of the participants was 64 years, the mean dialysis duration was 35 days, and there were 44 deaths (8.4%) during a 1-year follow-up period. Two metabolites were significantly associated with 1-year mortality. Quinolinate levels (a kynurenine pathway metabolite) were 1.72-fold higher in patients who died within year 1 compared with those who did not (pFDR, 0.009), wheras mesaconate levels (an emerging immunometabolite) were 1.57-fold higher (pFDR, 0.002). An additional 42 metabolites had high importance as LASSO, 46 RF, and 9 both ML models but were not significant limma.

Conclusion: Quinolinate and mesaconate were significantly associated with a 1-year risk of death in incident patients receiving maintenance hemodialysis. External validation of our findings is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403082PMC
http://dx.doi.org/10.1016/j.ekir.2024.06.039DOI Listing

Publication Analysis

Top Keywords

metabolites associated
12
patients receiving
12
receiving maintenance
12
associated mortality
8
mortality patients
8
maintenance hemodialysis
8
risk death
8
1-year mortality
8
dialysis duration
8
associated 1-year
8

Similar Publications

Background: Disturbances in lipid metabolism are usually associated with hyperlipidemia, which is commonly observed in donkeys with inappetence or anorexia. The diagnostic utility of ultrasound measurements of croup fat thickness (CFT) and relative liver echogenicity for lipomobilization in donkeys with fasting-induced hyperlipidemia was investigated. A prospective observational control study involving 25 donkeys was conducted, and the animals were randomly assigned to a fasting group (FG, n = 20) and a control group (CG, n = 5).

View Article and Find Full Text PDF

Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.

View Article and Find Full Text PDF

Cannabis consumption and legalization is increasing globally, raising concerns about its impact on fertility. In humans, we previously demonstrated that tetrahydrocannabinol (THC) and its metabolites reach the ovarian follicle. An extensive body of literature describes THC's impact on sperm, however no such studies have determined its effects on the oocyte.

View Article and Find Full Text PDF

Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.

View Article and Find Full Text PDF

Background And Purpose: Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the longitudinal impact of LLLT on brain metabolites has not been studied. The purpose of this study was to use magnetic resonance spectroscopic imaging (MRSI) to assess the metabolic response of LLLT in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases.

View Article and Find Full Text PDF