98%
921
2 minutes
20
Polydimethylsiloxane (PDMS) is an elastomer that has received primary attention from researchers due to its excellent physical, chemical, and thermal properties, together with biocompatibility and high flexibility properties. Another material that has been receiving attention is beeswax because it is a natural raw material, extremely ductile, and biodegradable, with peculiar hydrophobic properties. These materials are applied in hydrophobic coatings, clear films for foods, and films with controllable transparency. However, there is no study with a wide range of mechanical, optical, and wettability tests, and with various proportions of beeswax reported to date. Thus, we report an experimental study of these properties of pure PDMS with the addition of beeswax and manufactured in a multifunctional vacuum chamber. In this study, we report in a tensile test a 37% increase in deformation of a sample containing 1% beeswax (BW1%) when compared to pure PDMS (BW0%). The Shore A hardness test revealed a 27% increase in the BW8% sample compared to BW0%. In the optical test, the samples were subjected to a temperature of 80 °C and the BW1% sample increased 30% in transmittance when compared to room temperature making it as transparent as BW0% in the visible region. The thermogravimetric analysis showed thermal stability of the BW8% composite up to a temperature of 200 °C. The dynamic mechanical analysis test revealed a 100% increase in the storage modulus of the BW8% composite. Finally, in the wettability test, the composite BW8% presented a contact angle with water of 145°. As a result of this wide range of tests, it is possible to increase the hydrophobic properties of PDMS with beeswax and the composite has great potential for application in smart devices, food and medicines packaging films, and films with controllable transparency, water-repellent surfaces, and anti-corrosive coatings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2024.106716 | DOI Listing |
Org Lett
September 2025
Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States.
This communication describes a straightforward method for the trifluoromethylborylation of unactivated alkenes. The reaction proceeds through the formation of an electron donor-acceptor (EDA) complex between a trifluoromethylthiophenium salt and bis(catechol)diboron under broad-spectrum white-light irradiation. Due to the mild reaction conditions, the trifluoromethylborylation tolerates a wide range of functional groups, including esters, acids, alcohols, epoxides, and a variety of heterocycles.
View Article and Find Full Text PDFOrg Lett
September 2025
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.
A novel copper-catalyzed radical cross-coupling reaction for the thioesterification of polyfluoroarenes is developed using KS and aldehydes in water. This protocol employs a readily available KS as a sulfur source, eliminating the need for hazardous thiols and organic solvents. The mild reaction conditions are compatible with a wide range of functional groups, providing access to diverse polyfluoroaryl thioesters.
View Article and Find Full Text PDFJ Urban Health
September 2025
Department of Population Health, NYU Grossman School of Medicine, New York University, New York, NY, USA.
Housing insecurity is a key social determinant of a wide range of health outcomes, subject to large racial inequities, and with a likely sensitive period in childhood. Housing insecurity can manifest in multiple ways and change over time, but previous studies have primarily focused on single dimensions or a single time point. This study examines cumulative exposure to multiple forms of housing insecurity from birth to adolescence, overall, and by race in large US cities.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2025
State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
This study develops an integrated X-ray absorption spectroscopy (XAS) photoemission electron microscopy (PEEM) platform on beamline BL09U at the Shanghai Synchrotron Radiation Facility (SSRF), enabling nanoscale characterization of complex materials through energy-resolved imaging and local-area XAS. By using the wide range of energy tunability, full access to different polarizations and PEEM's surface sensitivity, we have established a gap-monochromator control system under the EPICS framework to synchronize the elliptically polarized undulator (EPU) gap and monochromator energy dynamically, optimizing photon flux stability for absorption fine structure analysis. Combining X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) with PEEM and local-area XAS, this platform achieves concurrent mapping of electronic structures and magnetic domains in ferromagnetic nano-patterns, as demonstrated through our studies of NiFe Permalloy using this system.
View Article and Find Full Text PDFPediatr Radiol
September 2025
Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, United States.
Magnetic resonance imaging (MRI) has become an essential tool in the evaluation of pediatric liver disease. However, the unique physiological, anatomical, and behavioral characteristics of pediatric patients present distinct challenges that necessitate tailored imaging strategies. These guidelines, developed by members of the Society for Pediatric Radiology (SPR) Magnetic Resonance and Abdominal Imaging Committees, provide comprehensive recommendations for performing high-quality liver MRI in children.
View Article and Find Full Text PDF