98%
921
2 minutes
20
This study investigated the spatial and temporal variations of PM2.5 concentrations in Harbin, China, under the influence of meteorological parameters and gaseous pollutants. The complex relationship between meteorological parameters and pollutants was explored using Pearson correlation analysis and interaction effect analysis. Using the correlation analysis and interaction analysis methods, four mechanical learning models, PCC-Is-CNN, PCC-Is-LSTM, PCC-Is-CNN-LSTM and PCC-Is-BP neural network, were developed for predicting PM2.5 concentration in different time scales by combining the long-term and short-term data with the basic mechanical learning models. The results show that the PCC-Is-CNN-LSTM model has superior prediction performance, especially when integrating short-term and long-term historical data. Meanwhile, applying the model to cities in other climatic zones, the results show that the model performs well in the Dwa climatic zone, while the prediction performance is lower in the CWa climatic zone. This suggests that although the model is well adapted in regions with a similar climate to Harbin, model performance may be limited in areas with complex climatic conditions and diverse pollutant sources. This study emphasizes the importance of considering meteorological and pollutant interactions to improve the accuracy of PM2.5 predictions, providing valuable insights into air quality management in cold regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176299 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
August 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. Electronic address:
Early and accurate cancer diagnosis is essential for reducing cancer-related mortality, and miRNA-21 has emerged as a critical biomarker for the early detection of various malignancies In this study, we developed a novel fluorescence biosensor, termed the MXene-SNA-Cas12a, that enables direct and amplification-free detection of miRNA-21 by integrating the CRISPR/Cas12a system with a chimeric split nucleic acid (SNA) activator and MXene-assisted fluorescence modulation. Specifically, a split activator comprising S12 ssDNA hybridized with miRNA-21 was employed to activate the trans-cleavage activity of Cas12a, effectively overcoming the system's inherent limitation in RNA recognition. Simultaneously, MXene nanosheets served as efficient quenchers by adsorbing FAM-labeled ssDNA reporters through non-covalent interactions and facilitating target-induced strand release, enabling a robust fluorescence "on/off" mechanism.
View Article and Find Full Text PDFToxics
August 2024
School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China.
Long-term exposure to PM pollution increases the risk of cardiovascular diseases, particularly ischemic heart disease (IHD). Current assessments of the health effects related to PM exposure are limited by sparse ground monitoring stations and applicable disease research cohorts, making accurate health effect evaluations challenging. Using satellite-observed aerosol optical depth (AOD) data and the XGBoost-PM25 model, we obtained 1 km scale PM exposure levels across China.
View Article and Find Full Text PDFEnviron Pollut
December 2024
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Although total carbon (TC) is an important component of fine particulate matter (PM: particulate matter with aerodynamic diameter of <2.5 μm); its sources remain partially unidentified, especially in coastal urban areas. With ongoing development of the global economy and maritime activities, ship-generated TC emissions in port areas cannot be neglected.
View Article and Find Full Text PDFEnviron Pollut
January 2024
College of Life Sciences, Shandong Normal University, Jinan 250014, China. Electronic address:
Bacteria and fungi are abundant and ubiquitous in bioaerosols in hospital environments. Understanding the distribution and diversity of microbial communities within bioaerosols is critical for mitigating their detrimental effects. Our knowledge on the composition of bacteria or fungi in bioaerosols is limited, especially the potential pathogens present in fine particulate matter (PM) from specialized hospitals.
View Article and Find Full Text PDFAnal Chim Acta
November 2023
University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain.
Background: In recent decades, there has been a growing interest within the scientific community regarding the study of the fraction that could be released in simulated biological fluids to estimate in vitro bioaccessibility and bioavailability of compounds. Concerning particulate matter (PM), studies were essentially focused on metal (oid)s probably due to more complex methodologies needed for organic compounds, requiring extraction and pre-concentration steps from simulated fluids, followed by chromatographic analysis. Thus, the development of a simple and sensitive methodology for the analysis of multi-class organic compounds released in different inhalation simulated fluids would represent a great contribution to the field.
View Article and Find Full Text PDF