Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Psychiatric diseases are bringing heavy burdens for both individual health and social stability. The accurate and timely diagnosis of the diseases is essential for effective treatment and intervention. Thanks to the rapid development of brain imaging technology and machine learning algorithms, diagnostic classification of psychiatric diseases can be achieved based on brain images. However, due to divergences in scanning machines or parameters, the generalization capability of diagnostic classification models has always been an issue. We propose Meta-learning with Meta batch normalization and Distance Constraint (M2DC) for training diagnostic classification models. The framework can simulate the train-test domain shift situation and promote intra-class cohesion, as well as inter-class separation, which can lead to clearer classification margins and more generalizable models. To better encode dynamic brain graphs, we propose a concatenated spatiotemporal attention graph isomorphism network (CSTAGIN) as the backbone. The network is trained for the diagnostic classification of major depressive disorder (MDD) based on multi-site brain graphs. Extensive experiments on brain images from over 3261 subjects show that models trained by M2DC achieve the best performance on cross-site diagnostic classification tasks compared to various contemporary domain generalization methods and SOTA studies. The proposed M2DC is by far the first framework for multi-source closed-set domain generalizable training of diagnostic classification models for MDD and the trained models can be applied to reliable auxiliary diagnosis on novel data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2024.3461312 | DOI Listing |