98%
921
2 minutes
20
Amyotrophic Lateral Sclerosis (ALS) is a multisystemic neurodegenerative disorder, with accumulating evidence indicating metabolic disruptions in the skeletal muscle preceding disease symptoms, rather than them manifesting as a secondary consequence of motor neuron (MN) degeneration. Hence, energy homeostasis is deeply implicated in the complex physiopathology of ALS and skeletal muscle has emerged as a key therapeutic target. Here, we describe intrinsic abnormalities in ALS skeletal muscle, both in patient-derived muscle cells and in muscle cell lines with genetic knockdown of genes related to familial ALS, such as TARDBP (TDP-43) and FUS. We found a functional impairment of myogenesis that parallels defects of glucose oxidation in ALS muscle cells. We identified FOXO1 transcription factor as a key mediator of these metabolic and functional features in ALS muscle, via gene expression profiling and biochemical surveys in TDP-43 and FUS-silenced muscle progenitors. Strikingly, inhibition of FOXO1 mitigated the impaired myogenesis in both the genetically modified and the primary ALS myoblasts. In addition, specific in vivo conditional knockdown of TDP-43 or FUS orthologs (TBPH or caz) in Drosophila muscle precursor cells resulted in decreased innervation and profound dysfunction of motor nerve terminals and neuromuscular synapses, accompanied by motor abnormalities and reduced lifespan. Remarkably, these phenotypes were partially corrected by foxo inhibition, bolstering the potential pharmacological management of muscle intrinsic abnormalities associated with ALS. The findings demonstrate an intrinsic muscle dysfunction in ALS, which can be modulated by targeting FOXO factors, paving the way for novel therapeutic approaches that focus on the skeletal muscle as complementary target tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405449 | PMC |
http://dx.doi.org/10.1007/s00401-024-02794-y | DOI Listing |
PLoS One
September 2025
Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
Background: Metabolic syndrome (MetS) and sarcopenia are major global public health problems, and their coexistence significantly increases the risk of death. In recent years, this trend has become increasingly prominent in younger populations, posing a major public health challenge. Numerous studies have regarded reduced muscle mass as a reliable indicator for identifying pre-sarcopenia.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2025
Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
Long-term exercise training can attenuate sympathetic vasoconstriction in both resting and contracting skeletal muscle; however, the impact of an acute bout of exercise on vasoconstrictor responsiveness and the influence of aging is unknown. Therefore, we tested the hypothesis that an acute bout of exercise will blunt sympathetic-mediated vasoconstriction in resting and contracting skeletal muscle of young and older adults. Twenty-one adults (10 Young: 23±5 yr and 11 Older: 65±8 yr) performed a rest and a rhythmic handgrip exercise trial before and after either 30 minutes of cycling exercise (60-65% HRmax) or a time control period (seated rest).
View Article and Find Full Text PDFInt J Surg Pathol
September 2025
Department of Pathology, The Thirteenth People's Hospital of Chongqing, Chongqing, China.
Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.
View Article and Find Full Text PDFBiol Cybern
September 2025
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 61801, IL, USA.
In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).
View Article and Find Full Text PDFAbdom Radiol (NY)
September 2025
Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.
View Article and Find Full Text PDF