Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

First-degree relatives of patients with multiple myeloma are at increased risk for the disease, but the contribution of pathogenic germline variants (PGV) in hereditary cancer genes to multiple myeloma risk and outcomes is not well characterized. To address this, we analyzed germline exomes in two independent cohorts of 895 and 786 patients with multiple myeloma. PGVs were identified in 8.6% of the Discovery cohort and 11.5% of the Replication cohort, with a notable presence of high- or moderate-penetrance PGVs (associated with autosomal dominant cancer predisposition) in DNA repair genes (3.6% and 4.1%, respectively). PGVs in BRCA1 (OR = 3.9, FDR < 0.01) and BRCA2 (OR = 7.0, FDR < 0.001) were significantly enriched in patients with multiple myeloma when compared with 134,187 healthy controls. Five of the eight BRCA2 PGV carriers exhibited tumor-specific copy number loss in BRCA2, suggesting somatic loss of heterozygosity. PGVs associated with autosomal dominant cancer predisposition were associated with younger age at diagnosis, personal or familial cancer history, and longer progression-free survival after upfront high-dose melphalan and autologous stem-cell transplantation (P < 0.01). Significance: Our findings suggest up to 10% of patients with multiple myeloma may have an unsuspected cancer predisposition syndrome. Given familial implications and favorable outcomes with high-dose melphalan and autologous stem-cell transplantation in high-penetrance PGV carriers, genetic testing should be considered for young or newly diagnosed patients with a personal or family cancer history. See related commentary by Walker, p. 375.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528192PMC
http://dx.doi.org/10.1158/2643-3230.BCD-23-0208DOI Listing

Publication Analysis

Top Keywords

multiple myeloma
24
patients multiple
16
cancer predisposition
12
myeloma risk
8
risk outcomes
8
pathogenic germline
8
germline variants
8
dna repair
8
repair genes
8
pgvs associated
8

Similar Publications

Background: Clonal plasma cell disorders, such as multiple myeloma (MM), often cause excretion of monoclonal free light chains (MFLC) into urine that serve as diagnostic markers and can cause renal injury.

Content: Measures of urinary protein excretion (PEx) and MFLC excretion are parameters for diagnosing and managing plasma cell disorders, although the roles are evolving as new diagnostic tools are applied. Current guidelines dictate measuring PEx and MFLC excretion using 24-hour urine specimens, which have multiple shortcomings that compromise the quality of testing, delay results, and are burdensome for patients.

View Article and Find Full Text PDF

IntroductionDaratumumab is a therapeutic cornerstone of the management of multiple myeloma, exerting its anti-myeloma activity through targeting of the cell surface glycoprotein CD38 on plasma cells. While originally given intravenously, the subcutaneous formulation, daratumumab hyaluronidase injection (Dara SC), has been associated with non-inferior efficacy and lower infusion-related reaction rates (IRRs) in the treatment of multiple myeloma and light chain amyloidosis. A noted benefit of Dara SC is a short administration time; however, the optimal observation time post injection to ensure patient safety is unclear from the drug labeling.

View Article and Find Full Text PDF

B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapies have revolutionized the approach and management of relapsed/refractory multiple myeloma (RRMM), and as of 2025, idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel) are the only BCMA-targeted CAR T-cell therapies approved by the FDA. Exceptional responses were demonstrated for heavily pretreated patients in the KarMMa-1 trial, reporting a 73% overall response rate (ORR) and 98% in the CARTITUDE-1 trial. Furthermore, both therapies show a significant improvement in progression-free survival (PFS) compared to standard regimens when administered in earlier lines.

View Article and Find Full Text PDF

Background: Bone marrow (BM) Measurable Residual Disease (MRD) assessments underestimate disease burden in multiple myeloma, as focal lesions can exist outside the marrow. Functional imaging, like positron emission tomography-computed tomography (PET-CT), offers valuable insights into residual disease beyond the marrow. Combining marrow flow cytometry (FCM) with PET-CT for a composite MRD (cMRD) assessment before and after autologous stem cell transplant (ASCT) is expected to provide prognostic information, particularly in settings where patients receive extended duration of anti-myeloma therapy prior to ASCT.

View Article and Find Full Text PDF