Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Protein solubility prediction is useful for the careful selection of highly effective candidate proteins for drug development. In recombinant proteins synthesis, solubility prediction is valuable for optimizing key protein characteristics, including stability, functionality, and ease of purification. It contains valuable information about potential biomarkers or therapeutic targets and helps in early forecasting of neurodegenerative diseases, cancer, and cardiovascular disorders. Traditional wet-lab experimental protein solubility prediction approaches are error-prone, time-consuming, and costly. Researchers harnessed the competence of Artificial Intelligence approaches for replacing experimental approaches with computational predictors. These predictors inferred the solubility of proteins by analyzing amino acids distributions in raw protein sequences. There is still a lot of room for the development of robust computational predictors because existing predictors remain fail in extracting comprehensive discriminative distribution of amino acids. To more precisely discriminate soluble proteins from insoluble proteins, this paper presents ProSol-Multi predictor that makes use of a novel MLCDE encoder and Random Forest classifier. MLCDE encoder transforms protein sequences into informative statistical vectors by capturing amino acids multi-level correlation and discriminative distribution within raw protein sequences. The performance of proposed encoder is evaluated against 56 existing protein sequence encoding methods on a widely used protein solubility prediction benchmark dataset under two different experimental settings namely intrinsic and extrinsic. Intrinsic evaluation reveals that from all sequence encoders, proposed MLCDE encoder manages to generate non-overlapping clusters of soluble and insoluble classes. In extrinsic evaluation, 10 machine learning classifiers achieve better performance with proposed MLCDE encoder as compared to 56 existing protein sequence encoders. Moreover, across 4 public benchmark datasets, proposed ProSol-Multi predictor outshines 20 existing predictors by an average accuracy of 3%, MCC and AU-ROC of 2%. ProSol-Multi interactive web application is available at https://sds_genetic_analysis.opendfki.de/ProSol-Multi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401092 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e36041 | DOI Listing |