Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This project reports on the use of a novel nanomembrane filtering technology to isolate and analyze the bioactivity of microplastic (MP)-containing debris from Lake Ontario water samples. Environmental MPs are a complex mixture of polymers and sorbed chemicals that are persistent and can exhibit a wide range of toxic effects. Since human exposure to MPs is unavoidable, it is necessary to characterize their bioactivity to assess potential health risks. This work seeks to quantify MP presence in the nearshore waters of Lake Ontario and begin to characterize the bioactivity of the filtrate containing MPs. We utilized silicon nitride (SiN) nanomembrane technology to isolate debris sized between 8 and 20 μm from lake water samples collected at various times and locations. MPs were identified with Nile red staining. Cell-based assays were conducted directly on the filtered debris to test for cell viability, aryl hydrocarbon receptor (AhR) activity, and interleukin 6 (IL-6) levels as a measure of proinflammatory response. All samples contained MPs. None of the isolated debris impacted cell viability. However, AhR activity and IL-6 levels varied over time. Additionally, no associations were observed between the amount of plastic and bioactivity. Observed differences in activity are likely due to variations in the physiochemical properties of debris between samples. Our results highlight the need for increased sampling to fully characterize the bioactivity of MPs in human cells and to elucidate the role that sample physiochemical and spatiotemporal properties play in this activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11400607PMC
http://dx.doi.org/10.1016/j.eehl.2024.05.004DOI Listing

Publication Analysis

Top Keywords

water samples
12
characterize bioactivity
12
nanomembrane technology
8
technology isolate
8
lake ontario
8
cell viability
8
ahr activity
8
il-6 levels
8
samples
5
bioactivity
5

Similar Publications

Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.

View Article and Find Full Text PDF

China's aluminum-products industry, a large-scale consumer of industrial paints, is a potentially significant source of full-volatility organic compounds (F-VOCs). However, the emission characteristics of F-VOCs, including VOCs, intermediate-, semi-, and low-volatility organic compounds (I/S/LVOCs), and their role in ozone formation potentials (OFP), and secondary organic aerosol formation potentials (SOAP) remain unclear. In this study, we collected in-field samples from three industrial paints (solvent-based, water-based and powder paints) at spraying and drying processes, and treatment devices to analyze the emission characteristics of F-VOCs, OFP, SOAP.

View Article and Find Full Text PDF

PER: and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that accumulate in aquatic ecosystems, posing a threat to wildlife. This study examines the potential of Asian clams (Corbicula fluminea) as an active biomonitoring species for assessing PFAS contamination in the Scheldt River, Belgium. Clams were exposed in cages at six sites along the river for a six-week exposure period, with simultaneous collection of sediment and water samples at each site.

View Article and Find Full Text PDF

Evaluation of lung oxidative stress and inflammatory state using exhaled breath condensate analysis in early-life arsenic exposure.

J Breath Res

September 2025

Department of Anatomy, Physiology, and Cell Biology, , University of California Davis, School of Veterinary Medicine, Davis, California, 95616-5270, UNITED STATES.

Millions of people worldwide are exposed to environmental arsenic in drinking water, resulting in both malignant and nonmalignant diseases. Interestingly, early life exposure by itself is sufficient to produce higher incidences of these diseases later in life. Based on the delayed onset of disease, we hypothesized that early life arsenic exposure would also induce long-term alterations in the metabolic profile.

View Article and Find Full Text PDF

Decentralized wastewater management using treatment wetlands: Effective removal of antibiotics, resistance genes and organic micropollutants.

Sci Total Environ

September 2025

Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.

Treatment wetlands (TW) are a popular choice for decentralized wastewater treatment, with substantial documentation on their capacity to manage conventionally monitored pollutants. However, most insights into their effectiveness against emerging contaminants come from lab and mesocosm studies with a limited number of compounds, highlighting knowledge gaps in their performance at full scale. This study provides a first long-term, full-scale assessment of TW ability to remove a large number of organic micropollutants (OMPs) and manage antibiotic resistance under real-world conditions.

View Article and Find Full Text PDF