98%
921
2 minutes
20
Endochondral bone regeneration is a promising approach in regenerative medicine. Callus mimics (CMs) are engineered and remodeled into bone tissue upon implantation. The long-term objective is to fabricate a sustainable off-the-shelf treatment option for patients. Devitalization was introduced to facilitate storage and using allogeneic (donor) cells would further propel the off-the-shelf approach. However, allogeneic CMs for bone regeneration pose a potential antigenicity concern. Here, we explored the impact of devitalization on antigenicity and osteoinductive bone formation when implanting syngeneic or allogeneic CM in a vital or devitalized state. For this, we implanted chondrogenically differentiated rat-derived mesenchymal stromal cells using an allogeneic immunocompetent ectopic rat model. Vital syngeneic CMs demonstrated the highest bone formation, and vital allogeneic CMs showed the lowest bone formation, while both devitalized CMs showed comparable intermediate levels of bone formation. Preceding bone formation, the level of tartrate-resistant acid phosphatase staining at 7 and 14 days was proportional to the level of eventual bone formation. No differences were observed for local innate immune responses at any time point before or after bone formation. In contrast, allogeneic CMs elicit a mild adaptive immune response, which still permits bone formation in an immunocompetent environment, albeit at a reduced rate compared to the autologous living counterpart. Overall, devitalization delays bone formation when autologous CMs are implanted, whereas it accelerates bone formation in allogeneic CMs, highlighting the potential of this approach for achieving off-the-shelf treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555479 | PMC |
http://dx.doi.org/10.1093/stcltm/szae063 | DOI Listing |
J Vis Exp
August 2025
Institute of Orthopedic Surgery, Xijing Hospital, Air force Medical University;
Bone tissue is an important load-bearing organ of the human body. Moderate exercise enhances bone mass through mechanical loading, while high-intensity exercise may suppress it. Infrared therapy improves circulation, reduces pain/inflammation, and aids tissue repair.
View Article and Find Full Text PDFRegen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
ACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFStem Cells Int
August 2025
Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
Postmenopausal osteoporosis (PMOP) is a common bone metabolic disorder in middle-aged and elderly women, yet its pathogenesis remains unclear. This study investigates the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on bone homeostasis to provide insight into the mechanisms underlying PMOP. Sixteen female SD rats were randomly assigned to Sham and ovariectomized (OVX) groups.
View Article and Find Full Text PDFCureus
August 2025
Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, JPN.
Functional reconstruction of large mandibular defects, especially in young patients, presents a significant clinical challenge. The ideal approach should not only restore skeletal contour but also address nerve deficits and facilitate final occlusal rehabilitation, all while minimizing morbidity. This report describes a comprehensive, multi-staged strategy for such a case.
View Article and Find Full Text PDF