98%
921
2 minutes
20
Multicellular spheroids and patient-derived organoids find many applications in fundamental research, drug discovery, and regenerative medicine. Advances in the understanding and recapitulation of organ functionality and disease development require the generation of complex organoid models, including organoids with diverse morphologies. Microfluidics-based cell culture platforms enable time-efficient confined organoid generation. However, the ability to form organoids with different shapes with a subsequent transfer from microfluidic devices to unconstrained environments for studies of morphology-dependent organoid growth is yet to be demonstrated. Here, a microfluidic platform is introduced that enables high-fidelity formation and addressable release of breast cancer organoids with diverse shapes. Using this platform, the impact of organoid morphology on their growth in unconstrained biomimetic hydrogel is explored. It is shown that proliferative cancer cells tend to localize in high positive curvature organoid regions, causing their faster growth, while the overall growth pattern of organoids with diverse shapes tends to reduce interfacial tension at the organoid-hydrogel interface. In addition to the formation of organoids with diverse morphologies, this platform can be integrated into multi-tissue micro-physiological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202410547 | DOI Listing |
iScience
September 2025
Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
5-Ethynyl-2'-deoxyuridine (EdU) has revolutionized DNA replication and cell cycle analyses through fast, efficient click chemistry detection. However, commercial EdU kits suffer from high costs, proprietary formulations, limited antibody multiplexing capabilities, and difficulties with larger biological specimens. Here, we present OpenEMMU (Open-source EdU Multiplexing Methodology for Understanding DNA replication dynamics), an optimized, affordable, and user-friendly click chemistry platform utilizing off-the-shelf reagents.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States. Electronic address:
The human microbiome plays a critical role in health and disease. Disruptions in microbiota composition or function have been implicated not only as markers but also as drivers of diverse pathologies, creating opportunities for targeted microbiome interventions. Advancing these therapies requires experimental models that can unravel the complex, bidirectional interactions between human tissue and microbial communities.
View Article and Find Full Text PDFInflamm Bowel Dis
September 2025
Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.
Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites.
View Article and Find Full Text PDFGut Liver
September 2025
Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
Background/aims: Patient-derived organoids (PDOs) are promising preclinical models that replicate critical tumor features. However, intratumoral heterogeneity challenges the clinical utility of PDOs, especially in capturing diverse tumor cell subpopulations.
Methods: Single-cell transcriptomics was used to analyze PDOs from distinct sites within a single gastric cancer tumor, aiming to assess their ability to reflect intratumoral heterogeneity.
Single-cell sequencing has revolutionized our understanding of cellular heterogeneity and responses to environmental stimuli. However, mapping transcriptomic changes across diverse cell types in response to various stimuli and elucidating underlying disease mechanisms remains challenging. Studies involving physical stimuli, such as radiotherapy, or chemical stimuli, like drug testing, demand labor-intensive experimentation, hindering mechanistic insight and drug discovery.
View Article and Find Full Text PDF