98%
921
2 minutes
20
Bismuth germanate (BiGeO, BGO) is a widely used optical sensing material with a high electro-optic coefficient, ideal for optical electric field sensors. Achieving high precision in electric field sensing requires fabricating optical waveguides on BGO. Traditional waveguide writing methods face challenges with this material. This study explores using femtosecond laser writing technology for preparing waveguides on BGO, leveraging ultrafast optical fields for superior material modification. Our experimental analysis shows that a cladding-type waveguide, written with a femtosecond laser at 200 kHz repetition frequency and 10.15 mW average power (pulse energy of 50.8 nJ), exhibits excellent light-guiding characteristics. Simulations of near-field optical intensity distribution and refractive index variations using the refractive index reconstruction method demonstrate that the refractive index modulation ensures single-mode transmission and effectively confines light to the core layer. In situ refractive index characterization confirms the feasibility of fabricating a waveguide with a refractive index reduction on BGO. The resulting waveguide has a loss per unit length of approximately 1.2 dB/cm, marking a successful fabrication. Additionally, we design an antenna electrode, analyze sensor performance indicators, and integrate a preparation process plan for the antenna electrode. This achievement establishes a solid experimental foundation for future studies on BGO crystal waveguides in electric field measurement applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397851 | PMC |
http://dx.doi.org/10.3390/s24175570 | DOI Listing |
J Biomed Opt
September 2025
Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany.
Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.
Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.
Med Phys
September 2025
School of Computer, Electronics and Information, Guangxi University, Nanning, China.
Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.
View Article and Find Full Text PDFEar Hear
September 2025
Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Objectives: In patients with cochlear implants, tools for measuring intracochlear electric environment as well as neural responses to electrical stimulation are widely available. This study aimed to investigate the possible correlation of changes in the responsiveness of the auditory nerve measured by neural response telemetry with changes in the peak and spread of the intracochlear electric field measured by transimpedance matrix (TIM) in patients implanted with straight electrode arrays.
Design: In this retrospective study, we analyzed a cohort of 144 ears of 113 consecutive patients who were implanted with Slim Straight electrode array (Cochlear Ltd.
Genome Biol
September 2025
Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.
View Article and Find Full Text PDFBMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDF