Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In recent years, offshore wind farms have frequently encountered engineering geological disasters such as seabed liquefaction and scouring. Consequently, in situ monitoring has become essential for the safe siting, construction, and operation of these installations. Current technologies are hampered by limitations in single-parameter monitoring and insufficient probe-penetration depth, hindering comprehensive multi-parameter dynamic monitoring of seabed sediments. To address these challenges, we propose a foldable multi-sensor probe and establish an underwater adaptive continuous penetration system capable of concurrently measuring seabed elevation changes and sediment pore water pressure profiles. The reliability of the equipment design is confirmed through static analysis of the frame structure and sealed cabin. Furthermore, laboratory tests validate the stability and accuracy of the electrical and mechanical sensor measurements. Preliminary tests conducted in a harbor environment demonstrate the system's effectiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398134 | PMC |
http://dx.doi.org/10.3390/s24175563 | DOI Listing |