98%
921
2 minutes
20
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism affecting fatty acid and amino acid oxidation with an incidence of 1 in 200,000 live births. MADD has three clinical phenotypes: severe neonatal-onset with or without congenital anomalies, and a milder late-onset form. Clinical diagnosis is supported by urinary organic acid and blood acylcarnitine analysis using tandem mass spectrometry in newborn screening programs. MADD is an autosomal recessive trait caused by biallelic mutations in the , , and genes encoding the alpha and beta subunits of the electron transfer flavoprotein (ETF) and ETF-coenzyme Q oxidoreductase enzymes. Despite significant advancements in sequencing techniques, many patients remain undiagnosed, impacting their access to clinical care and genetic counseling. In this report, we achieved a definitive molecular diagnosis in a newborn by combining whole-genome sequencing (WGS) with RNA sequencing (RNA-seq). Whole-exome sequencing and next-generation gene panels fail to detect variants, possibly affecting splicing, in deep intronic regions. Here, we report a unique deep intronic mutation in intron 1 of the gene, c.35-959A>G, in a patient with early-onset lethal MADD, resulting in pseudo-exon inclusion. The identified variant is the third mutation reported in this region, highlighting intron 1 vulnerability. It cannot be excluded that these intronic sequence features may be more common in other genes than is currently believed. This study highlights the importance of incorporating RNA analysis into genome-wide testing to reveal the functional consequences of intronic mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395610 | PMC |
http://dx.doi.org/10.3390/ijms25179637 | DOI Listing |
PLoS Genet
September 2025
Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.
The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.
In standard short-read whole-exome sequencing (WES), capture probes are typically designed to target the protein-coding regions (CDS), and regions outside the exons-except for adjacent intronic sequences-are rarely sequenced. Although the majority of known pathogenic variants reside within the CDS as nonsynonymous variants, some disease-causing variants are located in regions that are difficult to detect by WES alone, such as deep intronic variants and structural variants, often requiring whole-genome sequencing (WGS) for detection. Moreover, WES has limitations in reliably identifying pathogenic variants within mitochondrial DNA or repetitive regions.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.
GNE myopathy is an autosomal recessive distal myopathy resulting from biallelic pathogenic variants in the GNE gene, a key enzyme in sialic acid biosynthesis. Although most pathogenic variants are missense variants, recent advances have enabled the identification of copy number variations, deep intronic variants, and regulatory changes in the promoter region, significantly enhancing diagnostic accuracy. Progress in genetic diagnostics now allows detection of rare and complex variants.
View Article and Find Full Text PDFFront Genet
August 2025
Department of Neurology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.
Objective: We report a case of CSF1R-microglial encephalopathy associated with a rare intronic c.2654 + 1G>A mutation, featuring negative diffusion-weighted imaging (DWI) findings and a cerebrospinal fluid (CSF) biomarker profile indicative of Alzheimer's disease-related changes, and we explore the associations between genetic mutations, CSF biomarker alterations, and neuroimaging manifestations.
Methods: This study documents the demographic data, detailed medical history, and clinical manifestations of a patient with CSF1R-microglial encephalopathy.
Genes Genomics
September 2025
Infectious Diseases Department, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.
Background: Dystrophinopathy is severe X-linked recessive muscle disease caused by mutations in DMD gene. There is an increasing number of deep intronic variants in DMD gene, and understanding the pathogenic mechanisms of intronic variants can help the diagnosis and treatment of patients with DMD.
Objective: To identify two novel splice site variants in two families affected with Dystrophinopathy.